Vol. 48
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-22
Space-Time Reversal Symmetry Properties of Electromagnetic Green's Tensors for Complex and Bianisotropic Media
By
Progress In Electromagnetics Research, Vol. 48, 145-184, 2004
Abstract
Space-Time reversal symmetry properties of free-Space electromagnetic Green's tensors for complex and bianisotropic homogeneous media are discussed. These properties are defined by symmetry of the medium under consideration, of the point sources and of the vector S connecting the source and the point of observation. The constraints imposed on Green's tensors by the restricted Time reversal, by the center and anticenter of symmetry are independent on the vector S orientation. Other Space-Time reversal operators lead to constraints on Green's tensors only for some special directions in Space. These directions are along the (anti)axes and (anti)planes and normal to the (anti)axes and (anti)planes. The full system of the continuous magnetic point groups for description of Space-Time reversal symmetry of Green's tensors is defined and a general group-theoretical method for calculation of simplified forms of Green's tensors is presented.
Citation
Victor A. Dmitriev , "Space-Time Reversal Symmetry Properties of Electromagnetic Green's Tensors for Complex and Bianisotropic Media," Progress In Electromagnetics Research, Vol. 48, 145-184, 2004.
doi:10.2528/PIER04020501
http://www.jpier.org/PIER/pier.php?paper=0402051
References

1. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, IEEE Press, New York, 1994.

2. Kong, J. A., Theorems of bianisotropic media, Proc. IEEE, Vol. 60, 1036-1046, 1972.

3. Altman, C. and K. Suchy, "Reciprocity," Spatial Mapping and Time Reversal in Electromagnetics, 1991.

4. Hamermesh, M., Group Theory and its Application to Physical Problems, Addison-Wesley, Reading, MA, 1962.

5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.

6. Barybin, A. A. and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory: Application to Guided-Wave Optics, Rinton Press, Princeton, USA, 2002.

7. Tai, C.-T., Dyadic Green's Functions in Electromagnetic Theory, IEEE Press, New York, 1994.

8. Kritikos, H. N., "Rotational symmetries of electromagnetic radiation fields," IEEE Trans. Antennas Propag., Vol. 31, 377-382, 1983.
doi:10.1109/TAP.1983.1143036

9. Dmitriev, V., "Tables of the second rank constitutive tensors for linear homogeneous media described by the point magnetic group of symmetry," Progress in Electromagnetics Research, Vol. 28, 47-99, 2000.
doi:10.2528/PIER99062502

10. Lindell, I. V., A. H. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," J. Electromagn. Waves Applic., Vol. 9, 887-903, 1995.

11. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, Massachusets, 1998.

12. Gvozdev, V. V. and A. N. Serdjukov, "Green's function and fields of the moving charges in a gyrotropic medium," Optics and Spectr., Vol. 47, 544-548, 1979.

13. Bassiri, S., N. Engheta, and C. H. Papas, "Dyadic Green's function and dipole radiation in chiral media," Alta Freq., Vol. LV, 83-88, 1986.

14. Sakoda, K., Optical Properties of Photonic Crystals, Springer- Verlag, Berlin, 2001.

15. Chen, H. C., Theory of Electromagnetic Waves, McGraw-Hill, New York, 1983.

16. Cheng, D., "Green dyadic and dipole radiation in triaxial omega medium," Electron. Lett., Vol. 32, 529-530, 1996.
doi:10.1049/el:19960393

17. Cheng, D., "Green's dyadics in reciprocal uniaxial bianisotropic media by cylindrical vector wave functions," Phys. Rev. E, Vol. 54, 2917-2924, 1996.
doi:10.1103/PhysRevE.54.2917

18. Cottis, P. G. and G. D. Kondylis, "Properties of the dyadic Green's function for an unbounded anisotropic medium," IEEE Trans. Antennas Propag., Vol. AP-43, 154-161, 1995.
doi:10.1109/8.366377

19. Lindell, I. V. and F. Olyslager, "Analytic Green dyadic for a class of nonreciprocal anisotropic media," IEEE Trans. Antennas Propag., Vol. AP-45, 1563-1565, 1997.
doi:10.1109/8.633867

20. Lindell, I. V. and W. S. Weiglhofer, "Green dyadic for a uniaxial bianisotropic medium," IEEE Trans. Antennas Propag., Vol. 42, 1013-1016, 1994.
doi:10.1109/8.299606

21. Olyslager, F., ''Time-harmonic two-and three-dimensional Green's dyadics for general uniaxial bianisotropic media, Vol. AP-43, 430-434, '' IEEE Trans. Antennas Propag., Vol. AP-43, 430-434, 1995.

22. Olyslager, F. and B. Jakoby, Time-harmonic two-and threedimensional Green dyadics for a special class of gyrotropic bianisotropic media, IEE Proc.-Microw. Antennas Propag., Vol. 143, 413-416, 1996.

23. Olyslager, F. and I. V. Lindell, "Closed-form Green's dyadics for a class of media with axial bi-anisotropy," IEEE Trans. Antennas Propag., Vol. AP-46, 1888-1890, 1998.
doi:10.1109/8.743841

24. Olyslager, F. and I. V. Lindell, "Green's dyadics for a class of bi-anisotropic media with nonsymmetric bi-anisotropic dyadics," Int. J. Electron. Commun., Vol. 52, 32-36, 1998.

25. Tan, E. L., Vector wave function expansion of dyadic Green's functions for bianisotropic media, IEE Proc.-Microw. Antennas Propag., Vol. 149, 57-63, 2002.

26. Weiglhofer, W. S., "Analytic methods and free-space dyadic Green's functions," Radio Science, Vol. 28, 847-857, 1993.

27. Weiglhofer, W. S., "Dyadic Green function for unbounded general uniaxial bianisotropic medium," Int. J. Electronics, Vol. 77, 105-115, 1994.

28. Comay, E., "The problem of spherically symmetric electromagnetic radiation," Am. J. Phys., Vol. 70, 715-716, 2002.
doi:10.1119/1.1477432

29. Suchy K., C. Altman, and A. Schatzberg, "Orthogonal mappings of time-harmonic electromagnetic fields in inhomogeneous (bi)anisotropic media," Radio Science, Vol. 20, 149-160, 1985.

30. Electromagnetic Symmetry, Baum C. E. and N. H. Kritikos (eds.), Taylor & Francis, Washington, 1995.

31. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, p.I, McGraw-Hill, New York, 1953.

32. Nye, J. F., Physical Properties of Crystals, Oxford University Press, New York, 1993.