Vol. 51
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-12-10
Anomalous Properties of Scattering from Cavities Partially Loaded with Double-Negative OR Single-Negative Metamaterials
By
Progress In Electromagnetics Research, Vol. 51, 49-63, 2005
Abstract
In this paper, the theoretical justification and the numerical verification of the anomalous scattering from cavities partially filled with metamaterials are presented. A hybrid numerical formulation based on the Finite Element Method (FEM) and on the Boundary Integral (BI) for the analysis of cavity backed structures with complex loading metamaterials is first presented. The proposed approach allows the analysis of cavities filled with materials described by tensorial linear constitutive relations, which may well describe artificial metamaterials synthesized with proper inclusions in a host dielectric. It is found that cavities loaded with pairs of metamaterial layers with "resonant" features possess unusual scattering properties, and with judicious selection of constitutive parameters for these materials the transparency effect or significant enhancement in the backscattering from such cavities are obtained. This may be considered as a first step towards the analysis of the scattering and radiating features of cavity-backed patch antennas and reflect-arrays in presence of multilayered metamaterial loads.
Citation
Filiberto Bilotti, Andrea Alu, Nader Engheta, and Lucio Vegni, "Anomalous Properties of Scattering from Cavities Partially Loaded with Double-Negative OR Single-Negative Metamaterials," Progress In Electromagnetics Research, Vol. 51, 49-63, 2005.
doi:10.2528/PIER04041401
References

1. Brown, A. D., J. L. Volakis, L. C. Kempel, and Y. Y. Botros, "Patch antennas on ferromagnetic substrates," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 1, 26-32, 1999.
doi:10.1109/8.752980

2. Vouvakis, M. N., C. A. Balanis, C. R. Birtcher, and A. C. Polycarpou, "Ferrite-loaded cavity-backed antennas including nonuniform and nonlinear magnetization effects," IEEE Trans. Antennas Propagat., Vol. AP-51, No. 5, 1000-1010, 2003.
doi:10.1109/TAP.2003.811504

3. Varadan, V. K., V. V. Varadan, and A. Lakhtakia, "On the possibility of designing broadband anti-reflection coatings with chiral composites," J. Wave Material Interaction, Vol. 2, No. 1, 71-81, 1987.

4. Cory, H. and I. Rosenhouse, "Minimization of reflection coefficient at feed of random-covered reflector antenna by chiral device," Electron. Lett., Vol. 27, No. 25, 2345-2347, 1991.

5. Brewitt-Taylor, C. R., P. G. Lederer, F. C. Smith, and S. Haq, "Measurement and prediction of helix-loaded chiral composites," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 4, 692-700, 1999.
doi:10.1109/8.768809

6. Kamenetkii, E. O., "On the technology of making chiral and bianisotropic waveguides for microwave propagation," Microwave Opt. Technol. Lett., Vol. 11, No. 2, 103-107, 1996.
doi:10.1002/(SICI)1098-2760(19960205)11:2<103::AID-MOP17>3.0.CO;2-F

7. Kamenetkii, E. O., "Magnetostatically controlled bianisotropic media: a novel class of artificial magneto-electric materials," Advances in Complex Electromagnetic Materials, 359-376, 1997.

8. Ishimaru, A., S. W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. on Ant. and Propagat., Vol. 51, No. 10, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565

9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2081, 1999.
doi:10.1109/22.798002

11. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007

12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 92, No. 4, 517-526.

13. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E., Vol. 64, No. 5, 056625, 2001.
doi:10.1103/PhysRevE.64.056625

14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

15. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

17. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless Propagat. Lett., Vol. 1, No. 1, 10-13, 7727.
doi:10.1109/LAWP.2002.802576

18. Alù, A. and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-52, No. 1, 199-210, 2004.

19. Alù, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: anomalous tunneling and transparency," IEEE Trans. on Antennas and Propagat., Vol. AP-51, No. 10, 2558-2570, 2003.

20. Alù, A. and N. Engheta, "Resonances in sub-wavelength cylindrical structures made of pairs of double-negative and double-positive or ε-negative and μ-negative coaxial shells," Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA'03), 8-12, 2003.

21. Alù, A. and N. Engheta, "Peculiar radar cross section properties of double-negative and single-negative metamaterials," Proceedings of the 2004 IEEE Radar Conference, 26-29, 2004.

22. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "How metamaterials may significantly affect the wave transmission through sub-wavelength hole in a flat perfectly conducting screen," Proceedings of IEE Seminar on Metamaterials for Microwave and (Sub) Mil limetre Wave Applications: Photonic Bandgap and Double Negative Designs, 111-116, 2003.

23. Bilotti, F., L. Vegni, and A. Toscano, "Radiation and scattering features of patch antennas with bianisotropic substrates," IEEE T-AP, Vol. 51, No. 3, 449-456, 2003.

24. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three dimensional cavity backed apertures," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 1, 97-104, 1991.
doi:10.1109/8.64442

25. Jin, J. M. and J. L. Volakis, "Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 4, 543-550, 1991.
doi:10.1109/8.81469

26. Volakis, J. L., T. Ozdemir, and J. Gong, "Hybrid finite element methodologies for antennas and scattering," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 11, 493-507, 1997.
doi:10.1109/8.558664

27. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 11, 1598-1604, 1991.
doi:10.1109/8.102775