1. Brown, A. D., J. L. Volakis, L. C. Kempel, and Y. Y. Botros, "Patch antennas on ferromagnetic substrates," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 1, 26-32, 1999.
doi:10.1109/8.752980
2. Vouvakis, M. N., C. A. Balanis, C. R. Birtcher, and A. C. Polycarpou, "Ferrite-loaded cavity-backed antennas including nonuniform and nonlinear magnetization effects," IEEE Trans. Antennas Propagat., Vol. AP-51, No. 5, 1000-1010, 2003.
doi:10.1109/TAP.2003.811504
3. Varadan, V. K., V. V. Varadan, and A. Lakhtakia, "On the possibility of designing broadband anti-reflection coatings with chiral composites," J. Wave Material Interaction, Vol. 2, No. 1, 71-81, 1987.
4. Cory, H. and I. Rosenhouse, "Minimization of reflection coefficient at feed of random-covered reflector antenna by chiral device," Electron. Lett., Vol. 27, No. 25, 2345-2347, 1991.
5. Brewitt-Taylor, C. R., P. G. Lederer, F. C. Smith, and S. Haq, "Measurement and prediction of helix-loaded chiral composites," IEEE Trans. Antennas Propagat., Vol. AP-47, No. 4, 692-700, 1999.
doi:10.1109/8.768809
6. Kamenetkii, E. O., "On the technology of making chiral and bianisotropic waveguides for microwave propagation," Microwave Opt. Technol. Lett., Vol. 11, No. 2, 103-107, 1996.
doi:10.1002/(SICI)1098-2760(19960205)11:2<103::AID-MOP17>3.0.CO;2-F
7. Kamenetkii, E. O., "Magnetostatically controlled bianisotropic media: a novel class of artificial magneto-electric materials," Advances in Complex Electromagnetic Materials, 359-376, 1997.
8. Ishimaru, A., S. W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static Lorentz theory," IEEE Trans. on Ant. and Propagat., Vol. 51, No. 10, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565
9. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847
10. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2081, 1999.
doi:10.1109/22.798002
11. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low-frequency plasmons in thin wire structures," J. of Physics: Condensed Matter, Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007
12. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 92, No. 4, 517-526.
13. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E., Vol. 64, No. 5, 056625, 2001.
doi:10.1103/PhysRevE.64.056625
14. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184
15. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Appl. Phys. Lett., Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489
16. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966
17. Engheta, N., "An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas Wireless Propagat. Lett., Vol. 1, No. 1, 10-13, 7727.
doi:10.1109/LAWP.2002.802576
18. Alù, A. and N. Engheta, "Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-52, No. 1, 199-210, 2004.
19. Alù, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: anomalous tunneling and transparency," IEEE Trans. on Antennas and Propagat., Vol. AP-51, No. 10, 2558-2570, 2003.
20. Alù, A. and N. Engheta, "Resonances in sub-wavelength cylindrical structures made of pairs of double-negative and double-positive or ε-negative and μ-negative coaxial shells," Proceedings of the International Conference on Electromagnetics in Advanced Applications (ICEAA'03), 8-12, 2003.
21. Alù, A. and N. Engheta, "Peculiar radar cross section properties of double-negative and single-negative metamaterials," Proceedings of the 2004 IEEE Radar Conference, 26-29, 2004.
22. Alù, A., F. Bilotti, N. Engheta, and L. Vegni, "How metamaterials may significantly affect the wave transmission through sub-wavelength hole in a flat perfectly conducting screen," Proceedings of IEE Seminar on Metamaterials for Microwave and (Sub) Mil limetre Wave Applications: Photonic Bandgap and Double Negative Designs, 111-116, 2003.
23. Bilotti, F., L. Vegni, and A. Toscano, "Radiation and scattering features of patch antennas with bianisotropic substrates," IEEE T-AP, Vol. 51, No. 3, 449-456, 2003.
24. Jin, J. M. and J. L. Volakis, "A finite element-boundary integral formulation for scattering by three dimensional cavity backed apertures," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 1, 97-104, 1991.
doi:10.1109/8.64442
25. Jin, J. M. and J. L. Volakis, "Electromagnetic scattering by and transmission through a three-dimensional slot in a thick conducting plane," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 4, 543-550, 1991.
doi:10.1109/8.81469
26. Volakis, J. L., T. Ozdemir, and J. Gong, "Hybrid finite element methodologies for antennas and scattering," IEEE Trans. Antennas Propagat., Vol. AP-45, No. 11, 493-507, 1997.
doi:10.1109/8.558664
27. Jin, J. M. and J. L. Volakis, "A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity," IEEE Trans. Antennas Propagat., Vol. AP-39, No. 11, 1598-1604, 1991.
doi:10.1109/8.102775