1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. AP-14, No. 5, 302-307, 1966. Google Scholar
2. Taflove, A., Computational Electrodynamics, Artech House, 1995.
3. Taflove, A., Advances in Computational Electrodynamics, Artech House, 1998.
4. Hipp, J. E., "Soil electromagnetic parameters as functions of frequency, density, and soil moisture," Proc. IEEE, Vol. 62, No. 1, 98-103, 1974. Google Scholar
5. Gurel, L. and U. Oguz, "Simulations of ground penetrating radars over lossy and heterogeneous grounds," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1190-1197, 2001.
doi:10.1109/36.927440 Google Scholar
6. Oguz, U. and L. Gurel, "Frequency responses of ground penetrating radars operating over highly lossy grounds," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 6, 1385-1394, 2002.
doi:10.1109/TGRS.2002.800437 Google Scholar
7. Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, "Finite-difference time domain simulation of ground penetrating radar on dispersive, Inhomogeneous, and conductive soils," IEEE Trans. Geosci. Remote Sensing, Vol. 36, No. 11, 1928-1937, 1998.
doi:10.1109/36.729364 Google Scholar
8. Bourgeois, J. M. and G. S. Smith, "A fully three-dimensional simulation of a ground-penetrating radar: FDTD theory compared with experiment," IEEE Trans. Geosci. Remote Sensing, Vol. 34, No. 1, 36-44, 1996.
doi:10.1109/36.481890 Google Scholar
9. Kashiwa, T. and I. Fukai, "A treatment by FDTD method of dispersive characteristics associated with electronic polarization," Microwave and Optics Technology Letters, Vol. 3, 203-205, 1990. Google Scholar
10. Joseph, R. M., S. C. Hagness, and A. Taflove, "Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulse," Optics Letters, Vol. 16, 1412-1414, 1991. Google Scholar
11. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075 Google Scholar
12. Gedney, S. D., "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propagat., Vol. 44, No. 12, 1630-1639, 1996.
doi:10.1109/8.546249 Google Scholar
13. Gedney, S. D., "An anisotropic PML absorbing media for FDTD simulation of field in lossy dispersive media," Electromagnetics, Vol. 16, 399-415, 1996. Google Scholar
14. Maloney, J. G., K. L. Shlager, and G. S. smith, "A simple FDTD model for transient excitation of antennas by transmission lines," IEEE Trans. Antennas Propagat., Vol. 42, No. 2, 289-292, 1994.
doi:10.1109/8.277228 Google Scholar
15. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A deep parametric study of resistor-loaded bow-tie antennas for ground penetrating radar applications using FDTD," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 4, 732-742, 2004.
doi:10.1109/TGRS.2003.819442 Google Scholar
16. Taflove, A. and M. E. Brodwin, "Numerical solution of steady-state electromagnetic scattering problems using the time- dependent Maxwells equations," IEEE Trans. Microwave Theory Tech., Vol. MTT-23, No. 8, 623-630, 1975.
doi:10.1109/TMTT.1975.1128640 Google Scholar
17. Jurgens, T. G., A. Taflove, K. Umashankar, and T. G. Moore, "Finite-difference time-domain modeling of curved surfaces," IEEE Trans. Antennas Propagat., Vol. 40, No. 4, 357-366, 1992.
doi:10.1109/8.138836 Google Scholar
18. Daniels, D. J., D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," IEEE Proc., Vol. 135, No. 4, 278-320, 1988. Google Scholar