1. Huynh, P. T., A. M. Jarolimek, and S. Dayee, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998. Google Scholar
2. Elmore, J. G., M. B. Barton, V. M. Moceri, S. Polk, P. J. Arena, and S. W. Fletcher, "Ten year risk of false positive screening mammography and clinical breast examinations," New England Journal of Medicine, Vol. 338, 1089-1096, 1998.
doi:10.1056/NEJM199804163381601 Google Scholar
3. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1854-1863, 2000.
doi:10.1109/22.883862 Google Scholar
4. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near field imaging," IEEE Microwave magazine, Vol. 3, 48-56, 2002.
doi:10.1109/6668.990683 Google Scholar
5. Fear, E. C., X. Lii, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: localization of tumors in three dimensions," IEEE Transactions on Biomedical Engineering, Vol. 49, 812-821, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
6. Chaudhary, S. S., R. K. Mishra, A. Swarup, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1981. Google Scholar
7. Semenov, S. Y. et al., "Microwave tomography: Two-dimensional system for biological imaging," IEEE Transactions on Biomedical Engineering, Vol. 43, 869-877, 1996.
doi:10.1109/10.532121 Google Scholar
8. Rangayyan, R. M., N. M. El-Faramawy, J. E. L. Desautels, and O. A. Alim, "Measures of acutance and shape for classification of breast tumor," IEEE Transactions on Medical Imaging, Vol. 16, 799-810, 1997.
doi:10.1109/42.650876 Google Scholar
9. Meaney, P. M., M. W. Fanning, D. Li, S. P. Poplack, and K. D. Paulsen, "A clinical prototype of active microwave imaging of the breast," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1841-1853, 2000.
doi:10.1109/22.883861 Google Scholar
10. Meaney, P. M., S. A. Pendergrass, M. W. Fanning, D. Li, and K. D. Paulsen, "Importance of using reduced contrast coupling medium in 2D microwave breast imaging," Journal of Electromagnetic Waves and Application, Vol. 17, 333-355, 2003.
doi:10.1163/156939303322235851 Google Scholar
11. Foti, S. J., R. P. Flam, J. F. Aubin, L. E. Larsen, and J. H. Jacobi, "A water immersed microwave phased array system for interrogation of biological targets," Medical Applications of Microwave Imaging, 148-166, 1986. Google Scholar
12. Bindu, G., A. Lonappan, V. Thomas, V. Hamsakutty, C. K. Aanandan, and K. T. Mathew, "Microwave characterization of breast phantom materials," Microwave and Optical Technology Letters, Vol. 43, 506-508, 2004.
doi:10.1002/mop.20517 Google Scholar
13. Mathew, K. T. and U. Raveendranath, Sensors Update, 185-210, 185-210, 1999.
14. Gabriel, S., R. W. Lau, and C. Gabriel, "Dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, 2251-2269, 1996.
doi:10.1088/0031-9155/41/11/002 Google Scholar
15. Bindu, G. et al., "Wideband bowtie antenna with coplanar stripline feed," Microwave and Optical Technology Letters, Vol. 42, 222-224, 2004.
doi:10.1002/mop.20258 Google Scholar
16. Bindu, G., A. Lonappan, C. K. Aanandan, and K. T. Mathew, "Wideband bowtie antenna for confocal microwave imaging," Asia Pacific Microwave Conference 2004, 2004. Google Scholar
17. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed focus and antenna array sensors," IEEE Transactions of Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
18. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Transactions of Antennas and Propagation, Vol. 47, 783-791, 1999.
doi:10.1109/8.774131 Google Scholar
19. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility of breast tumor detection and localization," IEEE MTT-S Digest, 383-386, 2003. Google Scholar
20. Fear, E. C., J. Sill, and M. A. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, 887-892, 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
21. Kosmas, P., C. M. Rappaport, and E. Bishop, "Modeling with the FDTD method for microwave breast cancer detection," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, 1890-1897, 2004.
doi:10.1109/TMTT.2004.831985 Google Scholar
22. Luebbers, R., F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, "A frequency dependent finite-difference time domain formulation for dispersive materials," IEEE Transactions on Electromagnetic Compatibility, Vol. 32, 222-227, 1990.
doi:10.1109/15.57116 Google Scholar
23. Meaney, P. M., K. D. Paulsen, A. Hartov, and R. K. Crane, "Microwave imaging of tissue assessment: Initial evaluation in multitarget tissue equivalent phantoms," IEEE Transactions on Biomedical Engineering, Vol. 43, 878-890, 1996.
doi:10.1109/10.532122 Google Scholar
24. Li, D., P. M. Meaney, T. Raynolds, S. Pendergrass, M. Fanning, and K. D. Paulsen, "A parallel-detection microwave spectroscopy system for breast imaging," Review of Scientific Instruments, Vol. 75, 2305-2313, 2004.
doi:10.1063/1.1764609 Google Scholar
25. Meaney, P. M., K. D. Paulsen, and J. T. Chang, "Near- field microwave imaging of biologically based materials using a monopole transceiver system," IEEE Transactions on Microwave Theory and Techniques, Vol. 46, 31-44, 1998.
doi:10.1109/22.654920 Google Scholar
26. Bulyshev, A. E. et al., "Computational modeling of three- dimensional microwave tomography of breast cancer," IEEE Transactions on Biomedical Engineering, Vol. 48, 1053-1056, 2001.
doi:10.1109/10.942596 Google Scholar
27. Taflove, A., Advances in Computational Electrodynamics: The Finite Difference Time Domain Method, Artech House. Inc., 1998.
28. Chew, W. C. and Y. M. Wang, "Reconstruction of two- dimensional permittivity distribution using the distorted born iterative method," IEEE Transactions on Medical Imaging, Vol. 9, 218-225, 1990.
doi:10.1109/42.56334 Google Scholar
29. Richmond, J. H., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Transactions on Antennas and Propagation, Vol. 13, 334-341, 1965.
doi:10.1109/TAP.1965.1138427 Google Scholar
30. Campbell, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Physics in Medicine and Biology, Vol. 37, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014 Google Scholar
31. HP 8510C Network Analyzer Operating and Programming Man- ual, Hewlett-Packard, Hewlett-Packard, 1988., 1988.