1. Bertoni, H. L., RadioPropagationforModernWirelessSystems, PrenticeHall PTR, 2000.
2. Blaunstein, N., Wireless CommunicationSystems, 417-489, Handbook of EngineeringElectromagnetics, 2004.
3. Rappaport, T. S., WirelessCommunications, PrenticeHall PTR, 1996.
4. Saunders, S. R., Antennas and Propagation for Wireless CommunicationSystems, J. Wiley&Sons, 1999.
5. Cox, D. C., R. R. Murray, and A. W. Norris, "Measurements of 800 MHz radio transmission into buildings with metallic walls," AT&T Bel l Lab. Tech. J., Vol. 62, 2695-2717, 1983. Google Scholar
6. Davidson, A. and C. Hill, "Measurement of building penetration into medium building at 900 and 1500 MHz," IEEE Trans. Veh. Technol., Vol. 46, 161-167, 1997.
doi:10.1109/25.554748 Google Scholar
7. Turkmani, A. M. D. and A. F. de Toledo, "Modeling of radio transmission into and within multistory buildings at 900, 1800, and 2300 MHz," IEE Proc.-1, Vol. 40, 462-470, 1993. Google Scholar
8. Alexander, S. E., "Radio propagation within buildings at 900 MHz," Electronics Letters, Vol. 18, No. 21, 913-914, 1982. Google Scholar
9. Hashemi, H., "The indoor radio propagation channel," Proc. IEEE, Vol. 81, No. 7, 943-968, 1993.
doi:10.1109/5.231342 Google Scholar
10. Lemieux, J. F., M. Tanany, and H. M. Hafez, "Experimental evaluation of space/frequency/polarization diversity in the indoor wireless channel," IEEE Trans. Veh. Technol., Vol. 40, No. 3, 569-574, 1991.
doi:10.1109/25.97511 Google Scholar
11. Rappaport, T. S., "Characterization of UHF multipath radio channels in factory buildings," IEEE Trans. Antennas Propagat., Vol. 37, No. 8, 1058-1069, 1989.
doi:10.1109/8.34144 Google Scholar
12. Devasirvatham, D. M., M. J. Krain, and T. S. Rappaport, "Radio propagation measurements at 850 MHz, 1.7 GHz, and 4.0 GHz inside two dissimilar office buildings," Electronics Letters, Vol. 26, No. 7, 445-447, 1990. Google Scholar
13. Rappaport, T. S. and D. A. Hawbaker, "Wide-band microwave propagation parameters using cellular and linear polarized antennas for indoor wireless channels," IEEE Trans. on Communications, Vol. 40, No. 2, 231-242, 1992.
doi:10.1109/26.129185 Google Scholar
14. Tarng, J. H., W. R. Chang, and B. J. Hsu, "Three- dimensional modeling of 900 MHz and 2.44 GHz radio propagation in corridors," IEEE Trans. Veh. Technol., Vol. 46, 519-526, 1997.
doi:10.1109/25.580790 Google Scholar
15. Gibson, T. B. and D. C. Jenn, "Prediction and measurements of wall intersection loss," IEEE Trans. Antennas Propagat., Vol. 47, 55-57, 1999.
doi:10.1109/8.752988 Google Scholar
16. Lafortune, J. F. and M. Lecours, "Measurement and modeling of propagation losses in a building at 900 MHz," IEEE Trans. Veh. Technol., Vol. 39, 101-108, 1990.
doi:10.1109/25.54226 Google Scholar
17. Arnod, H. W., R. R. Murray, and D. C. Cox, "815 MHz radio attenuation measured within two commercial buildings," IEEE Trans. Antennas Propagat., Vol. 37, 1335-1339, 1989.
doi:10.1109/8.43547 Google Scholar
18. Whitman, G. M., K. S. Kim, and E. Niver, "A theoretical modelfor radio signal attenuation inside buildings," IEEE Trans. Veh. Technol., Vol. 44, 621-629, 1995.
doi:10.1109/25.406630 Google Scholar
19. Seidel, S. Y. and T. S. Rappaport, "Site-specific propagation prediction for wireless in-building personal communication system design," IEEE Trans. Veh. Technol., Vol. 43, 879-891, 1994.
doi:10.1109/25.330150 Google Scholar
20. Seidel, S. Y. and T. S. Rappaport, "914 MHz path loss prediction models for indoor wireless communication in multifloored buildings," IEEE Trans. Antennas Propagat., Vol. 40, No. 2, 207-217, 1992.
doi:10.1109/8.127405 Google Scholar
21. Honcharenko, W., H. L. Bertoni, J. Dailing, J. Qian, and H. D. Lee, "Mechanisms governing UHF propagation on single floors in modern office buildings," IEEE Trans. Veh. Technol., Vol. 41, No. 4, 496-504, 1992.
doi:10.1109/25.182602 Google Scholar
22. Honcharenko, W., H. L. Bertoni, and J. Dailing, "Mechanisms governing propagation between different floors in buildings," IEEE Trans. Antennas Propagat., Vol. 41, No. 6, 787-790, 1993.
doi:10.1109/8.250441 Google Scholar
23. Dersch, U. and E. Zollinger, "Propagation mechanisms in microcell and indoor environments," IEEE Trans. Veh. Technol., Vol. 43, 1058-1066, 1994.
doi:10.1109/25.330169 Google Scholar
24. Clarke, R. H., "A statistical theory of mobile-radio reception," Bel l Systems Technical Journal, Vol. 47, 957-1000, 1968. Google Scholar
25. Rappaport, T. S. et al., "Statistical channel impulse response models for factory and open plan building communication system design," IEEE Trans. on Communications, Vol. 39, No. 5, 794-805, 1991.
doi:10.1109/26.87142 Google Scholar
26. Devasirvatham, D. M. J., "Time delay spread and signal level measurements of 850 MHz radio waves in building environments," IEEE Trans. Antennas Propagat., Vol. 34, No. 2, 1300-1305, 1986.
doi:10.1109/TAP.1986.1143754 Google Scholar
27. Rappaport, T. S. and V. Fung, "Simulation of bit error performance of FSK, BPSK, and π/4-DQPSK in flat fading indoor radio channels using measurement-based channel model," IEEE Trans. Veh. Technol., Vol. 40, No. 4, 731-739, 1991.
doi:10.1109/25.108384 Google Scholar
28. Kanatas, A. G., I. D. Kountouris, G. B. Kostraras, and P. Constantinou, "A UTD propagation model in urban microcellular environments," IEEE Trans. Veh. Technol., Vol. 46, No. 2, 185-193, 1997.
doi:10.1109/25.554751 Google Scholar
29. Katedra, M. F., J. Perez, F. S. de Adana, and O. Gutierrez, "Efficient ray-tracing techniques for three-dimensional analyses of propagation in mobile communications: application to picocell and microcell scenarios," IEEE Antennas Propagat. Magazine, Vol. 40, No. 2, 15-28, 1998.
doi:10.1109/74.683539 Google Scholar
30. Kim, S. C., B. J. Guarino, Jr., T. M. Willis, III, et al. "Radio propagation measurements and prediction using three dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz," IEEE Trans. Veh. Technol., Vol. 48, 931-946, 1999.
doi:10.1109/25.790560 Google Scholar
31. Keenan, J. M. and A. J. Motley, "Radio coverage in buildings," BT Tech. J., Vol. 8, No. 1, 19-24, 1990. Google Scholar
32. "Propagation data and prediction models for the planning of indoor communication systems and local area networks in the frequency range 900 MHz to 100 GHz," International Telecommunication Union, ITU-R Recommendation, 123, 1997. Google Scholar
33. Blaunstein, N., "Average field attenuation in the non-regular impedance street waveguide," IEEE Trans. on Antennas Prop- agation, Vol. 46, No. 12, 1782-1789, 1998.
doi:10.1109/8.743813 Google Scholar