Vol. 58
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-11-16
Asymptotic Analysis of a Line Source Diffraction by a Perfectly Conducting Half-Plane in a BI-Isotropic Medium
By
Progress In Electromagnetics Research, Vol. 58, 271-283, 2006
Abstract
This paper is concerned with the diffraction of an electromagnetic wave by a perfectly conducting half-plane in a homogeneous bi-isotropic medium (asymptotically). Similar analysis in a source-free field is done in S. Asghar and A. Lakhtakia (1994), Planewave diffraction by a perfectly conducting half-plane in a homogeneous bi-isotropic medium. Int. J. Appl. Electromagnetics in materials, 5, (1994), 181-188. In this paper attention is focused on the wave coming from a line source. The objective is to study the scattering of an electromagnetic wave from the boundary of a half-plane and thereby to provide a theoretical framework for the line source diffraction asymptotical ly. In far field approximation it is shown that an incident wave coming from a line source behaves like a plane wave. The scattered field is calculated by using the Fourier transform and the Wiener-Hopf techniques. The scattered field in the far zone is determined by using contour integration.
Citation
Wasiq Hussain , "Asymptotic Analysis of a Line Source Diffraction by a Perfectly Conducting Half-Plane in a BI-Isotropic Medium," Progress In Electromagnetics Research, Vol. 58, 271-283, 2006.
doi:10.2528/PIER05091204
http://www.jpier.org/PIER/pier.php?paper=0509124
References

1. Asghar, S. and A. Lakhtakia, "Plane-wave diffraction by a perfectly conducting half-plane in a homogeneous bi-isotropic medium," Int. J. Appl. Electromagnetics in Materials, Vol. 5, 181-188, 1994.

2. Athanasiadis, C., G. Costakis, and I. G. Stratis, "Electromagnetic scattering by a perfectly conducting obstacle in a homogeneous chiral environment: solvability and low frequency theory," Math, Vol. 25, 927-944, 2002.

3. Athanasiadis, C. and S. Giotopoulos, "The Atkinson-Wilcox expansion theorem for electromagnetic chiral waves," Applied Mathematics Letters, Vol. 16, 675-681, 2003.
doi:10.1016/S0893-9659(03)00066-1

4. Beltrami, E., Rend. Inst. Lombardo Acad. Sci. Lett., and Vol. 22, 121, Vol. 167, 1889. Trkal, V., Casopis pro Pestovani Matematiky a Fisiky, Vol. 48, 302, 1919. Ballabh, R., Proc. Benares Math. Soc. (N. S.), Vol. 2, 85, 1940. Dombre et. al., J. Fluid Mech., Vol. 167, 353, 1986.

5. Faulkner, T. R., "Diffraction of an electromagnetic plane-wave by a metallic strip," J. Inst. Maths Applics, Vol. 1, 149-163, 1965.

6. Galaktionov, V. A., "On asymptotic self-similar behaviour for a quasilinear heat equation: single point blow-up," SIAM J. Math. Anal., Vol. 26, No. 3, 675-693, 1995.
doi:10.1137/S0036141093223419

7. Ishimaru, A., Electromagnetic Wave Propagation, Radiation and Scattering, Prentice-Hall International Editions, 1991.

8. Kalhor, H. A. and M. R. Zunoubi, "Electromagnetic scattering and absorption by arrays of lossless/lossy metallic or dielectric strips," Journal of Electromagnetic Waves and Applications, Vol. 19, 497-512, 2005.
doi:10.1163/1569393053303956

9. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific Publishing Co., Singapore, 1994.

10. Lakhtakia, A. and B. Shanker, "Beltrami fields within continuous source regions, volume integral equations, scattering algorithms, and the extended Maxwell-Garnett model," International Journal of Applied Electromagnetics in Materials, Vol. 4, 65-82, 1993.

11. Lakhtakia, A., "Linear constitutive relations for Beltrami- Maxwell postulates," Microwave and Optical Technology Letters, Vol. 7, 580-581, 1994.

12. Lakhtakia, A. and T. G. Mackay, "Infinite phase velocity as the boundary between positive and negative phase velocities," Microwave Opt. Technol. Lett., Vol. 20, 165-166, 2004.
doi:10.1002/mop.20081

13. Lakhtakia, A., M. W. McCall, and W. S. Weiglhofer, Negative Phase Velocity Mediums, Weiglhofer, W. S. and A. Lakhtakia (Eds.), Introduction to Complex Mediums for Electromagnetics and Optics, SPIE Press, Bellingham, WA, 2003.

14. Mackay, T. G., "Plane waves with negative phase velocity in isotropic chiral mediums," Microwave and Optical Technology Letters, Vol. 45, No. 2, 120-121, 2005.
doi:10.1002/mop.20742

15. Mackay, T. G. and A. Lakhtakia, "Plane waves with negative phase velocity in Faraday chiral mediums," Phys. Rev., Vol. E69, 2004.

16. Morro, A., "Modelling of optically active electromagnetic media," Applied Mathematics Letters, Vol. 15, 285-291, 2002.
doi:10.1016/S0893-9659(01)00132-X

17. Nazarchuk, Z. and K. Kobayashi, "Mathematical modelling of electromagnetic scattering from a thin penetrable target," Progress In Electromagnetics Research Vol. 55, Vol. '' Progress In Electromagnetics Research 55, 95-116, 2005.
doi:10.2528/PIER05022003

18. Noble, B., Methods Based on the Weiner-Hopf Techniques for the Solution of Partial Differential Equations, Pergamon, London, 1958.

19. Przezdziecki, S., Acta Physica Polonica, Vol. A83, Vol. A83, 739, 1993.

20. Rawlins, A. D., "Acoustic diffraction by an absorbing semi-infinite half plane in a moving fluid," Proc. Roy. Soc. Edinburgh, Vol. A72, 337-357, 1974.

21. Senior, T. B. A and E. Topsakal, "Diffraction by an anisotropic impedance half plane — Revised solution," Progress In Electromagnetics Research Vol. 53, Vol. '' Progress In Electromagnetics Research 53, 1-19, 2005.
doi:10.2528/PIER04061702

22. Sheen, J., "Time harmonic electromagnetic fields in an biaxial anisotropic medium," Journal of Electromagnetic Waves and Applications, Vol. 19, 753-768, 2005.
doi:10.1163/1569393054069082

23. Weiglhofer, W. S. and A. Lakhtakia, "Time-dependent scalar Beltrami-Hertz potentials in free space," International Journal of Infrared and Mil limeter Waves, Vol. 15, No. 6, 1994.

24. Weiglhofer, W. S., "Isotropic chiral media and scalar Hertz potentials," J. Phys. A: Math. Gen., Vol. 21, 2249-2251, 1988.
doi:10.1088/0305-4470/21/9/036