1. Oldham, K. B. and J. Spanier, The Fractional Calculus, Academic Press, 1974.
2. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E Google Scholar
3. Ozaktas, H. M., Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, Wiley, 2001.
4. Naqvi, Q. A., G. Murtaza, and A. A. Rizvi, "Fractional dual solutions to Maxwell equations in homogeneous chiral medium," Optics Communications, Vol. 178, 27-30, 2000.
doi:10.1016/S0030-4018(00)00651-9 Google Scholar
5. Lakhtakia, A., "A representation theorem involving fractional derivatives for linear homogeneous chiral media," Microwave Opt. Tech. Lett., Vol. 28, 385-386, 2001.
doi:10.1002/1098-2760(20010320)28:6<385::AID-MOP1048>3.0.CO;2-L Google Scholar
6. Veliev, E. I. and N. Engheta, "Fractional curl operator in reflection problems," 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, 14-17, 2004. Google Scholar
7. Naqvi, Q. A. and A. A. Rizvi, "Fractional dual solutions and corresponding sources," PIER, Vol. 25, 223-238, 2000. Google Scholar
8. Naqvi, Q. A. and M. Abbas, "Fractional duality and metamateri- als with negative permittivity and permeability," Optics Commu- nications, Vol. 227, 143-146, 2003.
doi:10.1016/j.optcom.2003.08.041 Google Scholar
9. Naqvi, Q. A. and M. Abbas, "Complex and higher order fractional curl operator in electromagnetics," Optics Communications, Vol. 241, 349-355, 2004.
doi:10.1016/j.optcom.2004.07.028 Google Scholar
10. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.