1. Hlavat′y, V., "Proper time, apparent time, and formal time in the twin paradox," J. Math. Mech., Vol. 9, 733-744, 1960. Google Scholar
2. Guven, J., "Classical and quantum mechanics of a relativistic system parametrized by proper time," Phys. Rev. D (3), Vol. 44, No. 10, 3360-3363, 1991. Google Scholar
3. Frisch, D. and J. Smith, "Measurement of the relativistic time dilation using μ-mesons," Amer. J. Phys., Vol. 31, No. 5, 342-355, 1963.
doi:10.1119/1.1969508 Google Scholar
4. Idemen, M., "Derivation of the Lorentz transformation from the Maxwell equations," J. Electromagn. Waves Appl., Vol. 19, No. 4, 451-467, 2005.
doi:10.1163/1569393053303884 Google Scholar
5. Sexl, R. U. and H. K. Urbantke, "Special relativity and relativistic symmetry in field and particle physics," Relativity, 2001. Google Scholar
6. Ungar, A. A., "Beyond the Einstein addition law and its gyroscopic Thomas precession: The theory of gyrogroups and gyrovector spaces," Fundamental Theories of Physics, Vol. 117, 2001. Google Scholar
7. Ungar, A. A., Analytic Hyperbolic Geometry: Mathematical Foundations and Applications, World Scientific, 2005.
8. Ungar, A. A., "Einstein′s special relativity: Unleashing the power of its hyperbolic geometry," Comput. Math. Appl., Vol. 49, 187-221, 2005.
doi:10.1016/j.camwa.2004.10.030 Google Scholar
9. Woodhouse, N. M. J., Special Relativity, Springer Undergraduate Mathematics Series, 2003.
10. Sartori, L., Understanding Relativity: A Simplified Approach to Einstein′s Theories, University of California Press, 1996.
11. Schott, B. A., "On the motion of the Lorentz electron," Phil. Mag., Vol. 29, 49-62, 1915. Google Scholar
12. Chen, J.-L. and A. A. Ungar, "From the group sl(2, C)," Found. Phys., Vol. 31, No. 11, 1611-1639, 2001.
doi:10.1023/A:1012694816323 Google Scholar
13. Ungar, A. A., "Gyrovector spaces and their differential geometry," Non-linear Funct. Anal. Appl., Vol. 10, No. 5, 791-834, 2005. Google Scholar
14. Vermeer, J., "A geometric interpretation of Ungar′s addition and of gyration in the hyperbolic plane," Topology Appl., Vol. 152, No. 3, 226-242, 2005.
doi:10.1016/j.topol.2004.10.012 Google Scholar
15. Jackson, J. D., Classical Electrodynamics, second ed., 1975.