Vol. 61
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-04-03
Infrared Wave Propagation in a Helical Waveguide with Inhomogeneous Cross Section and Applications
By
Progress In Electromagnetics Research, Vol. 61, 159-192, 2006
Abstract
This paper presents an improved approach for the propagation of electromagnetic (EM) fields along a helical dielectric waveguide with a circular cross section. The main ob jective is to develop a mode model for infrared (IR) wave propagation along a helical waveguide, in order to provide a numerical tool for the calculation of the output fields, output power density and output power transmission for an arbitrary step's angle of the helix. Another objective is to apply the inhomogeneous cross section for a hollow waveguide. The derivation is based on Maxwell's equations. The longitudinal components of the fields are developed into the Fourier- Bessel series. The transverse components of the fields are expressed as functions of the longitudinal components in the Laplace plane and are obtained by using the inverse Laplace transform by the residue method. The separation of variables is obtained by using the orthogonal- relations. This model enables us to understand more precisely the influence of the step's angle and the radius of the cylinder of the helix on the output results. The output power transmission and output power density are improved by increasing the step's angle or the radius of the cylinder of the helix, especially in the cases of space curved waveguides. This mode model can be a useful tool to improve the output results in all the cases of the hollow helical waveguides (e.g., in medical and industrial regimes).
Citation
Zion Menachem M. Mond , "Infrared Wave Propagation in a Helical Waveguide with Inhomogeneous Cross Section and Applications," Progress In Electromagnetics Research, Vol. 61, 159-192, 2006.
doi:10.2528/PIER06020205
http://www.jpier.org/PIER/pier.php?paper=0602025
References

1. Harrington, J. A. and Y. Matsuura, "Review of hollow waveguide technology," Biomedical Optoelectronic Instrumentation, Vol. 2396, 4-14, 1995.

2. Harrington, J. A., "A review of IR transmitting, hollow waveguides," Fiber and Integrated Optics, Vol. 19, 211-228, 2000.
doi:10.1080/01468030050058794

3. Marcatili, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bel l Syst. Tech. J., Vol. 43, 1783-1809, 1964.

4. Marhic, M. E., "Mode-coupling analysis of bending losses in IR metallic waveguides," Appl. Opt., Vol. 20, 3436-3441, 1981.

5. Miyagi, M., K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech., Vol. MTT-32, 513-521, 1984.
doi:10.1109/TMTT.1984.1132715

6. Croitoru, N., E. Goldenberg, D. Mendlovic, S. Ruschin, and N. Shamir, "Infrared chalcogenide tube waveguides," SPIE, Vol. 618, 140-145, 1986.

7. Melloni, A., F. Carniel, R. Costa, and M. Martinelli, "Determination of bend mode characteristics in dielectric waveguides," J. Lightwave Technol., Vol. 19, 571-577, 2001.
doi:10.1109/50.920856

8. Bienstman, P., M. Roelens, M. Vanwolleghem, and R. Baets, "Calculation of bending losses in dielectric waveguides using eigenmode expansion and perfectly matched layers," IEEE Photon. Technol. Lett., Vol. 14, 164-166, 2002.
doi:10.1109/68.980493

9. Mejias, P. M., "Light propagation through inhomogeneous media with radial refractive index: application to thermal blooming," Appl. Opt., Vol. 20, 4287-4295, 1981.

10. Mendlovic, D., E. Goldenberg, S. Ruschin, J. Dror, and N. Croitoru, "Ray model for transmission of metallic-dielectric hollow bent cylindrical waveguides," Appl. Opt., Vol. 28, 708-712, 1989.

11. Morhaim, O., D. Mendlovic, I. Gannot, J. Dror, and N. Croitoru, "Ray model for transmission of infrared radiation through multibent cylindrical waveguides," Opt. Eng., Vol. 30, 1886-1891, 1991.
doi:10.1117/12.56016

12. Kark, K. W., "Perturbation analysis of electromagnetic eigen- modes in toroidal waveguides," IEEE Trans. Microwave Theory Tech., Vol. MTT-39, 631-637, 1991.
doi:10.1109/22.76425

13. Lewin, L., D. C. Chang, and E. F. Kuester, Electromagnetic Waves and Curved Structures, 58-68, Chap. 6, 58-68, Peter Peregrinus Ltd., London, 1977.

14. Ghosh, S., P. K. Jain, and B. N. Basu, "Fast-wave analysis of an inhomogeneously-loaded helix enclosed in a cylindrical waveguide," Progress in Electromagnetics Research, Vol. 18, 19-43, 1998.

15. Kumar, D. and O. N. Singh II, "Elliptical and circular step-index fibers with conducting helical windings on the core-cladding boundaries for different winding pitch angles — A comparative modal dispersion analysis," Progress in Electromagnetics Research, Vol. 52, 1-21, 2005.
doi:10.2528/PIER04052002

16. Menachem, Z., N. Croitoru, and J. Aboudi, "Improved mode model for infrared wave propagation in a toroidal dielectric waveguide and applications," Opt. Eng., Vol. 41, 2169-2180, 2002.
doi:10.1117/1.1496490

17. Collin, R. E., Foundation for Microwave Engineering, McGraw- Hill, New York, 1996.

18. Yariv, A., Optical Electronics, 3rd ed., Holt-Saunders Int. Editions, 1985.

19. Baden Fuller, A. J., Microwaves, 118-120, Chap. 5, A. Wheaton and Co. Ltd, Pergamon Press, Oxford, 1969.

20. Olver, F. W. J., Royal Society Mathematical Tables, 2-30, Zeros and Associated Values, University Press Cambridge, 1960.

21. Jahnke, E. and F. Emde, Tables of Functions with Formulae and Curves, Chap. 8, 166, Dover publications, New York, 1945.

22. The Numerical Algorithms Group (NAG) Ltd., Wilkinson House, Wilkinson House, Oxford.

23. Menachem, Z., "Wave propagation in a curved waveguide with arbitrary dielectric transverse profiles," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 10, 1423-1424, 2003.
doi:10.1163/156939303322519612

24. Croitoru, N., A. Inberg, M. Oksman, and M. Ben-David, "Hollow silica, metal and plastic waveguides for hard tissue medical applications," SPIE, Vol. 2977, 30-35, 1997.
doi:10.1117/12.271023