1. Novikov, S. P. and A. P. Veselov, "Two-dimensional Schrödinger operator: Inverse scattering transform and evolutional equations," Physica D, Vol. 18, 267-273, 1986.
doi:10.1016/0167-2789(86)90187-9 Google Scholar
2. Bogdanov, L. V., "Veselov-Novikov equation as a natural twodimensional generalization of the Korteweg-de Vries equation," Theor. Math. Phys., Vol. 70, 1987.
doi:10.1007/BF01039213 Google Scholar
3. Tagami, Y., "Soliton-like solutions to a (2+1)-dimensional generalization of the KdV equation," Phys. Lett. A, Vol. 141, 116-120, 1989.
doi:10.1016/0375-9601(89)90770-6 Google Scholar
4. Cheng, Y., "Integrable systems associated with the Schrödinger spectral problem in the plane," J. Math. Phys., Vol. 32, 157-162, 1990.
doi:10.1063/1.529139 Google Scholar
5. Taimanov, I. A., "Modified Novikov-Veselov equation and differential geometry of surfaces," arXiv: dg-ga/9511005 v5 20, No. 11, 1995. Google Scholar
6. Ferapontov, E. V., "Stationary Veselov-Novikov equation and isothermally asymptotic surfaces in projective differential geometry," Differential Geometry and its Applications, Vol. 11, 117-128, 1999.
doi:10.1016/S0926-2245(99)00028-5 Google Scholar
7. Schurmann, H. W. and V. S. Serov, "Traveling wave solutions of a generalized modified Kadomtsev-Petviashvili equation," J. Math. Phys., Vol. 45, 2181-2187, 2004.
doi:10.1063/1.1737813 Google Scholar
8. Schurmann, H. W. and V. S. Serov, "Weierstrass' solutions to certain nonlinear wave and evolution equations," Proc. Progress in Electromagnetics Research Symposium, 651-654, 2004. Google Scholar
9. Cooper, F., et al. "Periodic solutions to nonlinear equations obtained by linear superposition," J. Phys. A:Math. Gen., Vol. 35, 10085-10100, 2002.
doi:10.1088/0305-4470/35/47/309 Google Scholar
10. Khare, A. and U. Sukhatme, "Cyclic identities involving Jacobi elliptic functions," J. Math. Phys., Vol. 43, 3798-3806, 2002.
doi:10.1063/1.1484541 Google Scholar
11. Khare, A. and A. Lakshminarayan, "Cyclic identities for Jacobi elliptic and related functions," J. Math. Phys., Vol. 44, 1822-1841, 2003.
doi:10.1063/1.1560856 Google Scholar
12. Khare, A. and U. Sukhatme, "Linear superposition in nonlinear equations," Phys. Rev. Lett., Vol. 88, 244101-1, 2002.
doi:10.1103/PhysRevLett.88.244101 Google Scholar
13. Veselov, A. P. and S. P. Novikov, "Finite-gap two-dimensional potential Schrödinger operators. Explicit formulas and evolution equations," Dokl. Akad. Nauk SSSR, Vol. 279, 20-24, 1984. Google Scholar
14. Schurmann, H. W., "Traveling-wave solutions of the cubic-quintic nonlinear Schrödinger equation," Phys. Rev. E, Vol. 54, 4312-4320, 1996.
doi:10.1103/PhysRevE.54.4312 Google Scholar
15. Weierstrass, K., Mathematische Werke V, Johnson, 1915.
16. Whittaker, E. T. and G. N.Watson, A Course of Modern Analysis, Cambridge University Press, 1927.
17. Chandrasekharan, K., Elliptic Functions, Springer, 1985.
18. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, 9th ed., 1972.
19. Drazin, P. G., Solitons, Cambridge University Press, 1983.
20. Schurmann, H. W., et al. "Superposition in nonlinear wave and evolution equations," Int. J. Theor. Phys.. Google Scholar
21. Bronstein, I. N., et al. Taschenbuch der Mathematik, 5th ed., 2000.
22. Milne-Thomson, L. M., Jacobian Elliptic Function Tables, Dover Publications, 1950.
23. cf. Ref. [12], Eq. (11); cf. Ref. [9], Eqs. (7), (8)..