Vol. 64
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-08-28
On Independence, Completeness of Maxwell's Equations and Uniqueness Theorems in Electromagnetics
By
, Vol. 64, 117-134, 2006
Abstract
In this paper, the independence, completeness of Maxwell's equations and uniqueness theorems in electromagnetics are reviewed. It is shown that the four Maxwell's equations are independent and complete. A complete uniqueness theorem is proposed and proven for the first time by pointing out logic mistakes in the existing proof and presenting a truth table. Therefore, electrostatics and magnetostatics can be reduced from dynamical electromagnetics in all aspects including not only the equations as subsets of Maxwell's equations but also the corresponding uniqueness theorems. It is concluded that the axiomatic system of electromagnetic theory must consist of all four Maxwell's equations.
Citation
Xingling Zhou , "On Independence, Completeness of Maxwell's Equations and Uniqueness Theorems in Electromagnetics," , Vol. 64, 117-134, 2006.
doi:10.2528/PIER06061302
http://www.jpier.org/PIER/pier.php?paper=06061302
References

1. Maxwell, J. C., A Treatise on Electricity and Magnetism, Dover Publications, Inc., 1954.

2. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, New York, 1941.

3. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Academic Press, San Diego, 1995.

4. Chew, W. C., Waves and Fields in Inhomogenous Media, Van Nostrand Teinhold, New York, 1990.

5. Kong, J. A., Maxwell Equations, EMW Publishing, Cambridge, MA, 2002.

6. Feynman, R. P., R. B. Leightonand M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Redwood City, CA, 1989.

7. Elliott, R. S., Electromagnetics: History, Theory, and Applications, IEEE Press, Piscataway, NJ, 1993.

8. Jackson, J. D., Classical Electrodynamics, 3rd edition, John Wiley & Sons, New York, 1998.

9. Rigden, J. S., Macmillan Encyclopedia of Physics, Simon & Schuster and Prentice Hall International, New York, 1996.

10. Pozar, D., Microwave Engineering, Addison-Wesley, Piscataway, NJ, 1993.

11. Cheng, D. K., Field and Wave Electromagnetics, Addison-Wesley Pub. Co., New York, 1989.

12. Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1991.

13. Schelkunoff, S. A., Electromagnetic Fields, Blaisdell Pub. Co., New York, 1963.

14. Jin, J. M., The Finite Element Method in Electromagnetics, John Wiley & Sons, New York, 1993.

15. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, Boston, 1995.

16. Senior, T. B. A. and J. L. Volakis, Approximate Boundary Conditions in Electromagnetics, The Institute of Electrical Engineers, New York, 1995.

17. Kong, J. A., Electromagnetic Wave Theory, 2nd edition, Wiley, New York, 1990.

18. Cessenat, M., Mathematical Methods in Electromagnetism: Linear theory and applications, World Scientific, River Edge, NJ, 1996.

19. Someda, C. G., Electromagnetic Waves, Chapman & Hall, New York, 1998.

20. Bossavit, A., Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements, Academic Press, San Diego, 1998.

21. Courant, R., Methods of Mathematical Physics, Vol. 2, Vol. 2, Interscience Publisher, New York, 1962.

22. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press, Oxford, 1962.

23. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New York, 1989.

24. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.

25. Losungender, E., "Maxwellschen Gleichungen," Physik. Z., Vol. 27, No. 22, 707-710, 1926.

26. Korn, G. A. and T. M. Korn, Mathematical Handbook for Scientists and Engineering (Definition, formulas, references and reviews), McGraw-Hill, New York, 1968.

27. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, Boca Raton, FL, 1999.

28. Wylie, C. R. and L. C. Barrett, Advanced Engineering Mathematics, McGraw-Hill, New York, 1995.

29. Knops, R. J. and L. E. Payne, Uniqueness Theorems in Linear Elasticity, Springer-Verlag, New York, 1971.

30. Keller, F. J., W. E. Gettysand M. J. Skove, Physics: Classical and Modern, McGraw-Hill, New York, 1993.

31. Solow, D., How to Read and Do Proofs: An introduction to mathematical thought processes, 2nd edition, Wiley, New York, 1990.

32. Velleman, D. J., How to Prove It: A structured approach, Cambridge University, New York, 1994.

33. Lakhtakia, A., Essays on the Formal Aspects of Electromagnetic Theory, World Scientific, River Edge, NJ, 1993.

34. Van Bladel, J., Electromagnetic Fields, Hemisphere Pub. Corp., Washington, 1965.

35. Schwartz, M., S. Green, and W. A. Rutledge, Vector Analysis, with Applications to Geometry and Physics, Harper, New York, 1960.

36. Zahn, M., Electromagnetic Field Theory: A problem solving approach, Wiley, New York, 1979.