Vol. 64
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-08-29
Modal Analysis and Dispersion Curves of a New Unconventional Bragg Waveguide Using a Very Simple Method
By
, Vol. 64, 191-204, 2006
Abstract
A theoretical modal dispersion study of a new unconventional Bragg waveguide having hypocycloidal core cross-section and surrounded by Bragg cladding layers is presented using a very simple boundary matching technique [1]. An attempt has been made to determine how the modal characteristics of a standard Bragg fiber change as its circular shape is changed to the hypocycloidal shape. It is seen that in the case of a hypocycloidal Bragg waveguide single mode guidance is possible when V ≤ 10.0 where V is the normalized frequency parameter.
Citation
Vivek Singh, Yogendra Kumar Prajapati, and Jai Prakash Saini, "Modal Analysis and Dispersion Curves of a New Unconventional Bragg Waveguide Using a Very Simple Method," , Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101
References

1. Singh, V., B. Prasad, and S. P. Ojha, "Analysis of the modal characteristics of a Bragg fiber with a small number of claddings using a very simple analytical method," Microwave Opt. Techncol Letter, Vol. 46, 271-275, 2005.
doi:10.1002/mop.20963

2. Yeh, P. and A. Yariv, "Theory of Bragg fiber," J. Opt Soc. Am., Vol. 68, 1196-1201, 1978.

3. Ito, H. T. N., Y. Sabaki, H. Ohtsu, K. I. Lee, and W. Jhe, Phys. Rev. Lett., Vol. 76, , Vol. 76, 4500, Phys. Rev. Lett., 1995.

4. Scalora, M., et al. "Optical limiting and switching of ultra short pulses in non-linear photonic band gap materials," Phys. Rev. Lett., Vol. 73, 1368-1371, 1994.
doi:10.1103/PhysRevLett.73.1368

5. Chigrin, D. N., et al. "A dielectric Bragg mirror: Can it be an omni directional reflector?," Optics and Photonics News, Vol. 10, 33, 1999.

6. Yablonovitch, E., "Inhibited spontaneous emission in solid state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

7. Joannopoulos, J. D., et al. Photonic Crystals:Molding the Flow of Light, Princeton Univ. Press, 1995.

8. Dasgupta, S., B. P. Pal, and M. R. Shenoy, Bragg Fibers:Guide d wave optical components and devices, Elsevier, IIT, Delhi, India, 2005.

9. Fink, Y., D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Light Waves Technol., Vol. 17, 2039-2041, 1999.
doi:10.1109/50.802992

10. Xu, Y., R. K. Lee, and A. Yariv, "Asymptotic analysis of Bragg fibers," Optics Letters, Vol. 25, 1756-1758, 2000.

11. Xu, Y., G. X. Ouyang, R. K. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fiber," J. Lightwave Technol., Vol. 20, 428-440, 2002.
doi:10.1109/50.988991

12. Xu, Y., et al. "Asymptotic analysis of silicon based Bragg fibers," Optic Express, Vol. 2, 1039-1049, 2004.

13. Marcon, Y., et al. "Design of weakly guiding Bragg fibers for chromatic dispersion shifting toward short wavelengths," J. Opt. A, Vol. 3, 144, 2001.

14. Yeh, P. and A. Yariv, "Bragg reflection waveguides," Optical Communication, Vol. 19, 427-430, 1976.
doi:10.1016/0030-4018(76)90115-2

15. Argyros, A., "Guided modes and loss in Bragg fibers," Optics Express, Vol. 10, 1411-1417, 2002.

16. Pal, B. P., S. Dasgupta, and M. R. Shenoy, "Bragg fiber design for transparent metro networks," Optics Express, Vol. 13, 621-624, 2005.
doi:10.1364/OPEX.13.000621

17. Bassett, I. M. and A. Arggros, "Elimination of polarization degeneracy in round waveguides," Optics Express, Vol. 10, 1342-1346, 2002.

18. Singh, V., B. Prasad, and S. P. Ojha, "Weak guidance analysis and dispersion curves of an infrared lightguide having a core crosssection with a new types of asymmetric loop boundary," Optical Fiber Technology, Vol. 6, 290-298, 2000.
doi:10.1006/ofte.2000.0329

19. Singh, V., B. Prasad, and S. P. Ojha, "A comparative study of the modal characteristics and wave guide dispersion of optical waveguides with three different closed loop cross sectional boundaries," Optik, Vol. 115, 281-288, 2004.

20. Singh, V., B. Prasad, and S. P. Ojha, "Theoretically obtained dispersion characteristics of an annular waveguide with a guiding region cross section bounded by two hypocycloidal loops," Microwave Optical Technical Letters, Vol. 37, 142-145, 2003.
doi:10.1002/mop.10849

21. Maurya, S. N., V. Singh, B. Prasad, and S. P. Ojha, "An optical waveguide with a hypocycloidal core cross section having a conducting sheath helix winding on the core-clading boundary—a comparative modal dispersion study vis-`a-vis a standard fiber with a sheath winding," J. Electromagnetic waves and Applications, Vol. 19, 1307-1326, 2005.
doi:10.1163/156939305775525846