Vol. 67
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-10-26
Ray Tracing Radio Waves in Wildfire Environments
By
Progress In Electromagnetics Research, Vol. 67, 153-172, 2007
Abstract
Wildfires are uncontrolled exothermic oxidation of vegetation. Flame combustion temperatures could be in excess of 1600 K. Under the high temperature environment, plants' organic structure crumbles to release omnipresent alkali nutrients into the combustion zone. The alkali based compounds thermally decomposed to constituent atoms which ultimately ionised to give ions and electrons. The presence of electrons in the flame lowers its refractive index, thereby creating a medium of spatially varying refractive index. In the medium, incident radio waves change speed and are consequently deflected from their original path. The refraction has an effect of decreasing signal intensity at a targeted receiver which is at the same height as a collimated beam transmitter which is at a considerable distance away from the former. A numerical experiment was set to investigate the sub refractive behaviour of a very high intensity eucalyptus wildfire (90 MWm−1) plume using two dimensional (2D) ray tracing scheme. The scheme traces radio rays as they traverse the plume. The ratio of number rays in a collimated beam reaching the targeted receiver to number of rays leaving the transmitter is used to calculate signal intensity loss in decibels (dB) at the receiver. Assuming an average natural plant alkali (potassium) content of 0.5%, attenuation (dB) was observed to be factor of both propagation frequency and temperature at the seat of the fire plume; and only of temperature at cooler parts of the plume. The 2D ray tracing scheme predicted a maximum attenuations of 14.84 and 5.47 dB for 3000 and 150 MHz respectively at 0.8 m above canopy-flame interface over propagation path of 48.25 m. An attenuation of 0.85 dB was predicted for frequencies from 150-3000 MHz over the same propagation distance at plume height of 52.8 m above ground.
Citation
Kgakgamatso Mphale, and Mal Heron, "Ray Tracing Radio Waves in Wildfire Environments," Progress In Electromagnetics Research, Vol. 67, 153-172, 2007.
doi:10.2528/PIER06082302
References

1. Akhtar, K., E. J. Scharer, S. M. Tysk, and E. Kho, "Plasma interferometry at high pressures," Review of Scientic Instruments, Vol. 74, No. 2, 996-1001, 2003.
doi:10.1063/1.1533104

2. Bean, B. R. and J. E. Dutton, "Radio meteorology," Monogr., Vol. 92, 1966.

3. Frost, L. S., "Conductivity of seeded atmospheric pressure plasmas," Journal of Applied Physics, Vol. 32, No. 10, 2029-2036, 1961.
doi:10.1063/1.1728283

4. Latham, D., "Space charge generated by wind tunnel fires," Atmospheric Research, Vol. 51, 267-278, 1999.
doi:10.1016/S0169-8095(99)00012-5

5. Ling, H., H. Kim, G. A. Hallock, B. W. Birkner, and A. J. M. Zaman, "Effect of an arc plume on satellite reflector performance," IEEE Trans. Ant. and Prop., Vol. 39, No. 9, 1412-419, 1991.
doi:10.1109/8.99052

6. Radojevic, M., "Chemistry of forest fires and regional haze with emphasis on southeast Asia," Pure and Applied Geophysics, No. 12, 157-187, 2003.
doi:10.1007/s00024-003-8771-x

7. Raison, R. J., P. K. Khaina, and P. Woods, "Mechanisms of element transfer to the atmosphere during vegetation burning," Canad. Journal of Forest Res., Vol. 15, 132-140, 1985.

8. Richerzhagen, B., "Finite element ray tracing: a new method for raytracing in gradient index media," Applied Optics, Vol. 35, No. 3, 6186-6188, 1996.

9. Shuler, K. E. and J. Weber, "A microwave investigation of the ionization of hydrogen-oxygen and acetylene-oxygen flames," Journal of Chemical Physics, Vol. 22, No. 3, 491-502, 1954.
doi:10.1063/1.1740095

10. Sorokin, A., X. Vancassel, and P. Mirabel, "Emission of ions and charged soot particle by aircraft engines," Atmos Chem. Phys. Dis., Vol. 2, 2045-2074, 2002.

11. Streifer, W. and K. B. Paxton, "Analytical solution of ray equation in cylindrical; inhomogeneous guiding media. 1. Meridonial rays," Applied Optics, Vol. 10, 769-775, 1971.

12. Weber, R. O., A. M. Gill, P. R. A. Lyons, and G. N. Mercer, "Time dependence of temperature above wildland fires," CALM Science, Vol. 4, 17-22, 1995.

13. Westberg, H. M., M. Bystrom, and B. Lecker, "Distribution of potassium, chlorine and sulphur between solid and vapour phases during combustion of wood and coal," Energy and Fuels, Vol. 17, 18-28, 2003.
doi:10.1021/ef020060l

14. Viegas, D. X., "Forest of propagation," Phil. Trans. R. Soc. Lond. A., Vol. 356, 2907-2928, 1998.
doi:10.1098/rsta.1998.0303

15. Vodacek, A., R. L. Kremens, S. C. Fordham, S. C. VanGorden, D. Luisi, J. R. Schott, and D. J. Latham, "Remote optical detection of biomass burning using potassium emission signature," Int. Journal of Remote Sensing, Vol. 23, 2721-2726, 2002.
doi:10.1080/01431160110109633

16. Williams, D. W., J. S. Adams, J. J. Batten, G. F. Whitty, and G. T. Richardson, "Operation Euroka: An Australian mass fire experiment," Report 386, 1970.

17. Foster, T., "Bushfire: history, prevention and control," A. H. and A. W. Reed, 1976.

18. Hubner, G. and A. R. Jones, "Refractive index of flames in far infrared," Journal of Phys. D: Appl. Phys., Vol. 6, 774-780, 1973.
doi:10.1088/0022-3727/6/6/319

19. Marchand, E. W., "Ray tracing in cylindrical gradient-index media," Applied Optics Physics, Vol. 11, 1104-1106, 1972.