Vol. 67
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-10-26
Microwave Emission from Two-Dimensional Inhomogeneous Dielectric Rough Surfaces Based on Physics-Based Two-Grid Method
By
Progress In Electromagnetics Research, Vol. 67, 181-203, 2007
Abstract
Numerical simulations of emission for two-dimensional randomly rough surfaces with an inhomogeneous layered medium are presented. The inhomogeneous layered medium is modeled by a generalized n-layered stratified media. The numerical method was adopted from the physics-based two-grid method (PBTG). To ensure the strict accuracy requirement while to relief the memory and CPU resources, the PBTG in conjunction with the sparse-matrix canonical grid method (SMCG) was used in this paper. In so doing the reflected terms of the dyadic Green's function that accounts for layered media were added into the integral equations governing the surface tangential fields. Since the reflected part of the dyadic Green's function does not contain any singularity, the normal components of the fields remain the same as in the case of homogeneous surfaces. It was found that the elements of Green's tensor are only important to the near-field since they decay very fast as spatial distance goes beyond a few wavelengths. The resulting integral equations are then solved by the Method of Moment (MoM). Comparisons between the inhomogeneous and the homogeneous rough surfaces suggest that the presence of the inhomogeneous layered medium has non-negligible contributions to emission, depending on the dielectric gradient and is polarization dependent.
Citation
Kunshan Chen Leung Tsang Jian-Cheng Shi , "Microwave Emission from Two-Dimensional Inhomogeneous Dielectric Rough Surfaces Based on Physics-Based Two-Grid Method," Progress In Electromagnetics Research, Vol. 67, 181-203, 2007.
doi:10.2528/PIER06082903
http://www.jpier.org/PIER/pier.php?paper=06082903
References

1. Tsang, L., J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, John Wiley & Sons, 1985.

2. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

3. Fung, A. K. and M. F. Chen, "Emission from an inhomogeneous layer from a rough surface," Radio Science, Vol. 16, 289-298, 1981.

4. Wang, J. R. and B. J. Choudhury, "Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency," J. Geophys. Res., Vol. 86, 5277-5282, 1981.

5. Tsang, L. and R. W. Newton, "Microwave emissions from soils with rough surfaces," J. Geophy. Res., Vol. 87, No. 11, 9017-9024, 1982.

6. Wang, J. R., P. E. O'Neill, T. J. Jackson, and E. T. Engman, "Multi-frequency measurements of the effects of soil moisture, soil texture and surface roughness," IEEE Trans. Geosci. Rem. Sens., Vol. GE-21, 44-51, 1983.

7. Mo, T., T. J. Schmugge, and J. R. Wang, "Calculations of the microwave brightness temperature of rough soil surfaces: bare field," IEEE Trans. Geosci. Remote Sensing, Vol. GE-25, No. 1, 47-54, 1987.
doi:10.1109/TGRS.1987.289780

8. Shi, J., J. Dozier, and H. Rott, "Snow mapping in alpine regions with synthetic aperture radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 1, 152-158, 1994.
doi:10.1109/36.285197

9. Shi, J., J. Wang, A. Hsu, P. O'Neill, and E. T. Engman, "Estimation of bare surface soil moisture and surface roughness parameters using L-band SAR image data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 5, 1254-1266, 1997.
doi:10.1109/36.628792

10. Fuks, I. M. and A. G. Voronovich, "Wave diffraction by rough interfaces in an arbitrary plane layered medium," Waves in Random Medium, Vol. 10, 253-272, 2000.
doi:10.1088/0959-7174/10/2/304

11. Johoson, J. T., "Thermal emission from a layered medium bounded by a slightly rough interface," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 2, 368-378, 2001.
doi:10.1109/36.905245

12. Chen, K. S., T. D. Wu, L. Tsang, Qin Li, and J. C. Shi, "The emission of rough surfaces calculated by the Integral equation method with a comparison to a three-dimensional moment method simulations," IEEE Trans. Geoscience and Remote Sensing, Vol. 41, No. 1, 90-101, 2002.
doi:10.1109/TGRS.2002.807587

13. Pelosi, G. and R. Coccioli, "A finite element approach for scattering from inhomogeneous media with a rough interface," Waves in Random Media, Vol. 7, 119-127, 1997.
doi:10.1088/0959-7174/7/1/008

14. Giovannini, H., M. Saillard, and A. Sentenac, "Numerical study of scattering from rough inhomogeneous films," J. Opt. Soc. Am, Vol. 15, No. 5, 1182-1191, 1998.

15. Tsang, L., C. H. Chan, and K. Pak, "Backscattering enhancement of a two-dimensional random rough surface (three-dimensional scattering) based on Monte Carlo simulations," J. of Optical Society of America A, Vol. 11, No. 2, 711-715, 1994.

16. Johnson, J., L. Tsang, R. Shin, K. Pak, C. H. Chan, A. Ishimaru, and Y. Kuga, "Backscattering enhancement of electromagnetic waves from two-dimensional perfectly conducting random rough surfaces: A Comparison of Monte Carlo simulations with experimental data," IEEE Trans. Antennas Propagat., Vol. 44, 748-756, 1996.
doi:10.1109/8.496261

17. Tsang, L. and Q. Li, "Numerical solution of scattering of waves by lossy dielectric surfaces using a physics-based two-grid method," Microwave Opt. Technol. Lett., Vol. 16, No. 6, 356-364, 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<356::AID-MOP10>3.0.CO;2-Z

18. Li, Q., C. H. Chan, and L. Tsang, "Monte-Carlo simulations of wave scattering from lossy dielectric random rough surfaces using the physics-based two-gird method and canonical grid method," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 752-763, 1999.
doi:10.1109/8.768816

19. Tsang, L., J.-H. Cha, and J. R. Thomas, "Electric fields of spatial Green's functions of microstrip structures and applications to the calculations of impedance matrix elements," Microwave and Optical Technology Letters, Vol. 20, No. 2, 90-97, 1999.
doi:10.1002/(SICI)1098-2760(19990120)20:2<90::AID-MOP3>3.0.CO;2-7

20. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, Volume II: Numerical Simulations, John Wiley & Sons, 2001.