1. Nicolson, A.M.and G.F.Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. IM-19, No. 11, 377-382, 1970. Google Scholar
2. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
3. Belhadj-Tahar, N.-E.and A.F ourrier-Lamer, "Broad-band analysis of a coaxial discontinuity used for dielectric measurements," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 3, 346-350, 1986.
doi:10.1109/TMTT.1986.1133342 Google Scholar
4. Belhadj-Tahar, N.-E., A. Fourrier-Lamer, and H. de Chanterac, "Broad-band simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 1, 1-7, 1990.
doi:10.1109/22.44149 Google Scholar
5. Obrzut, J.and A.Anop chenko, "Input impedance of a coaxial line terminated with a complex gap capacitance — numerical and experimental analysis," IEEE Trans. Instrum. Meas., Vol. 53, No. 4, 1197-1201, 2004.
doi:10.1109/TIM.2004.830777 Google Scholar
6. Huang, J., K.W u, P.Morin, and C.Aky el, "Characterization of highly dispersive materials using composite coaxial cells: electromagnetic analysis and wideband measurement," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 5, 770-777, 1996.
doi:10.1109/22.493931 Google Scholar
7. W exler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Trans. Microwave Theory Tech., Vol. 15, No. 9, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521 Google Scholar
8. Eom, H.J., Y.C.Noh, and J.K.P ark, "Scattering analysis of a coaxial line terminated by a gap," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 6, 218-219, 1998.
doi:10.1109/75.678569 Google Scholar
9. Da vidovich, M. V., "Full-wave analysis of coaxial mounting structure," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 265-270, 1999.
doi:10.1109/22.750220 Google Scholar
10. Wilkins, G. M., J.-F. Lee, and R. Mittra, "Numerical modeling of axisymmetric coaxial waveguide discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 8, 1323-1328, 1991.
doi:10.1109/22.85407 Google Scholar
11. Chen, Y., R.Mittra, and P.Harms, "Finite-difference timedomain algorithm for solving Maxwell's equations in rotationally symmetric geometries," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441 Google Scholar
12. Yu, W., R.Mittra, and S.Dey, "Application of the nonuniform FDTD technique to analysis of coaxial discontinuity structures," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, 207-209, 2001.
doi:10.1109/22.900011 Google Scholar
13. Holland, R., "Finite difference solutions of Maxwell's equations in generalized nonorthogonal coordinates," IEEE Trans. Nuc. Sci., Vol. NS-30, No. 6, 4589-4591, 1983. Google Scholar
14. Fusco, M., "FDTD algorithm in curvilinear coordinates," IEEE Trans on Antennas and Propagation, Vol. 38, No. 1, 76-89, 1990.
doi:10.1109/8.43592 Google Scholar
15. Zhao, Y.J., K.L.W u, and K.K.M.Cheng, "A compact 2-D fullwave finite-difference frequency-domain method for general guided wave structures," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447 Google Scholar
16. Pereda, J.A., A.V egas, and A.Prieto, "An improved compact 2D fullwave FDFD method for general guided wave structures," Microwave and Optical Technology Letters, Vol. 38, No. 4, 331-335, 2003.
doi:10.1002/mop.11052 Google Scholar
17. Li, L.Y.and J.F.Mao, "An improved compact 2-D finitedifference frequency-domain method for guided wave structures," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 12, 520-522, 2003.
doi:10.1109/LMWC.2003.819956 Google Scholar
18. Wang, B.Z., X.H.W ang, and W.Shao, "2D full-wave finitedifference frequency-domain method for lossy metal waveguide," Microwave and Optical Technology Letters, Vol. 42, No. 2, 158-161, 2004.
doi:10.1002/mop.20238 Google Scholar
19. Haffa, S., D.Hollmann, and W.Wiesb eck, "The finite difference method for S-parameter calculation of arbitrary three-dimensional structures," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 8, 1602-1610, 1992.
doi:10.1109/22.149538 Google Scholar
20. Bardi, I.and O.Biro, "An efficient finite-element formulation without spurious modes for anisotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1133-1139, 1991.
doi:10.1109/22.85380 Google Scholar
21. Angkaew, T., M.Matsuhara, and N.Kumagai, "Finite-element analysis of waveguide modes: a novel approach that eliminates spurious modes," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 2, 117-123, 1987.
doi:10.1109/TMTT.1987.1133613 Google Scholar
22. Williams, D.J.C.J.Railton, and D.J.Edw ards, "A mathematical model of concentrically loaded coaxial structures and its EMC applications," 7th International Conference on Electromagnetic Compatibility, No. 8, 91-98, 1990.
23. Marcuvitz, N., Waveguide Handbook, Peter Peregrinus Ltd., 1986.
24. Kong, J. A., Electromagnetic Wave Theory, 2nd ed., 1962.
26. Zhang, D.M.and C.F.F oo, "Theoretical analysis of the electrical and magnetic field distributions in a toroidal core with circular cross section," IEEE T MAGN, Vol. 35, No. 3, 1924-1931, 1999.
doi:10.1109/20.764886 Google Scholar
27. Labay, V.and J.Bornemann, "Matrix singular value decomposition for pole-free solutions of homogeneous matrix equations as applied to numerical modeling methods," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 2, 49-51, 1992.
doi:10.1109/75.122406 Google Scholar
28. Amari, S. and J. Bornemann, "A pole-free modal field-matching technique for eigenvalue problems in electromagnetics," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 9, 1649-1653, 1997.
doi:10.1109/22.622938 Google Scholar
29. Eleftheriades, G.V., A.S.Omar, L.P .B.Katehi, and G.M.Reb eiz, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 10, 1896-1903, 1994.
doi:10.1109/22.320771 Google Scholar