Vol. 67
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-10-26
Application of Mode Matching Method to Analysis of Axisymmetric Coaxial Discontinuity Structures Used in Permeability and/OR Permittivity Measurement
By
Progress In Electromagnetics Research, Vol. 67, 205-230, 2007
Abstract
This paper presents a mode matching method to analyze axisymmetric coaxial discontinuity structures, commonly used in the permeability and/or permittivity measurement.By performing the mode matching procedures at all discontinuity interfaces, a set of general simultaneous equations are derived, which can be easily solved.The s parameters and field distribution in the structures are readily obtained from the solution to the simultaneous equations. As a preliminary preparation for the mode matching method, the propagation constants of all the sections in the structure have to be solved.A one-dimensional frequency domain finite difference method is presented in this paper to efficiently solve the propagation constants for the multi-layered axisymmetric structures. Numerical examples show that the results obtained from the method in this paper are in good agreement with those from other methods in the published literature papers, and the method presented here has much higher efficiency.
Citation
Ruifeng Huang Daming Zhang , "Application of Mode Matching Method to Analysis of Axisymmetric Coaxial Discontinuity Structures Used in Permeability and/OR Permittivity Measurement," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
doi:10.2528/PIER06083103
http://www.jpier.org/PIER/pier.php?paper=06083103
References

1. Nicolson, A.M.and G.F.Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. IM-19, No. 11, 377-382, 1970.

2. Weir, W. B., Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.

3. Belhadj-Tahar, N.-E.and A.F ourrier-Lamer, "Broad-band analysis of a coaxial discontinuity used for dielectric measurements," IEEE Trans. Microwave Theory Tech., Vol. 34, No. 3, 346-350, 1986.
doi:10.1109/TMTT.1986.1133342

4. Belhadj-Tahar, N.-E., A. Fourrier-Lamer, and H. de Chanterac, "Broad-band simultaneous measurement of complex permittivity and permeability using a coaxial discontinuity," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 1, 1-7, 1990.
doi:10.1109/22.44149

5. Obrzut, J.and A.Anop chenko, "Input impedance of a coaxial line terminated with a complex gap capacitance — numerical and experimental analysis," IEEE Trans. Instrum. Meas., Vol. 53, No. 4, 1197-1201, 2004.
doi:10.1109/TIM.2004.830777

6. Huang, J., K.W u, P.Morin, and C.Aky el, "Characterization of highly dispersive materials using composite coaxial cells: electromagnetic analysis and wideband measurement," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 5, 770-777, 1996.
doi:10.1109/22.493931

7. W exler, A., "Solution of waveguide discontinuities by modal analysis," IEEE Trans. Microwave Theory Tech., Vol. 15, No. 9, 508-517, 1967.
doi:10.1109/TMTT.1967.1126521

8. Eom, H.J., Y.C.Noh, and J.K.P ark, "Scattering analysis of a coaxial line terminated by a gap," IEEE Microwave and Guided Wave Letters, Vol. 8, No. 6, 218-219, 1998.
doi:10.1109/75.678569

9. Da vidovich, M. V., "Full-wave analysis of coaxial mounting structure," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 3, 265-270, 1999.
doi:10.1109/22.750220

10. Wilkins, G. M., J.-F. Lee, and R. Mittra, "Numerical modeling of axisymmetric coaxial waveguide discontinuities," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 8, 1323-1328, 1991.
doi:10.1109/22.85407

11. Chen, Y., R.Mittra, and P.Harms, "Finite-difference timedomain algorithm for solving Maxwell's equations in rotationally symmetric geometries," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441

12. Yu, W., R.Mittra, and S.Dey, "Application of the nonuniform FDTD technique to analysis of coaxial discontinuity structures," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 1, 207-209, 2001.
doi:10.1109/22.900011

13. Holland, R., "Finite difference solutions of Maxwell's equations in generalized nonorthogonal coordinates," IEEE Trans. Nuc. Sci., Vol. NS-30, No. 6, 4589-4591, 1983.

14. Fusco, M., "FDTD algorithm in curvilinear coordinates," IEEE Trans on Antennas and Propagation, Vol. 38, No. 1, 76-89, 1990.
doi:10.1109/8.43592

15. Zhao, Y.J., K.L.W u, and K.K.M.Cheng, "A compact 2-D fullwave finite-difference frequency-domain method for general guided wave structures," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 1844-1848, 2002.
doi:10.1109/TMTT.2002.800447

16. Pereda, J.A., A.V egas, and A.Prieto, "An improved compact 2D fullwave FDFD method for general guided wave structures," Microwave and Optical Technology Letters, Vol. 38, No. 4, 331-335, 2003.
doi:10.1002/mop.11052

17. Li, L.Y.and J.F.Mao, "An improved compact 2-D finitedifference frequency-domain method for guided wave structures," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 12, 520-522, 2003.
doi:10.1109/LMWC.2003.819956

18. Wang, B.Z., X.H.W ang, and W.Shao, "2D full-wave finitedifference frequency-domain method for lossy metal waveguide," Microwave and Optical Technology Letters, Vol. 42, No. 2, 158-161, 2004.
doi:10.1002/mop.20238

19. Haffa, S., D.Hollmann, and W.Wiesb eck, "The finite difference method for S-parameter calculation of arbitrary three-dimensional structures," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 8, 1602-1610, 1992.
doi:10.1109/22.149538

20. Bardi, I.and O.Biro, "An efficient finite-element formulation without spurious modes for anisotropic waveguides," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 7, 1133-1139, 1991.
doi:10.1109/22.85380

21. Angkaew, T., M.Matsuhara, and N.Kumagai, "Finite-element analysis of waveguide modes: a novel approach that eliminates spurious modes," IEEE Trans. Microwave Theory Tech., Vol. 35, No. 2, 117-123, 1987.
doi:10.1109/TMTT.1987.1133613

22. Williams, D.J., C.J.Railton, and D.J.Edw ards, A mathematical model of concentrically loaded coaxial structures and its EMC applications, 7th International Conference on Electromagnetic Compatibility, No. 8, 91-98, 1990.

23. Marcuvitz, N., Waveguide Handbook, Peter Peregrinus Ltd., London, 1986.

24. Kong, J. A., Electromagnetic Wave Theory, 2nd ed., Wiley, New York, 1990. 25.Andrews, L. C., Special Functions for Engineers and Applied Mathematicians, McGraw-Hill, New York, 1962.

26. Zhang, D.M.and C.F.F oo, "Theoretical analysis of the electrical and magnetic field distributions in a toroidal core with circular cross section," IEEE T MAGN, Vol. 35, No. 3, 1924-1931, 1999.
doi:10.1109/20.764886

27. Labay, V.and J.Bornemann, "Matrix singular value decomposition for pole-free solutions of homogeneous matrix equations as applied to numerical modeling methods," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 2, 49-51, 1992.
doi:10.1109/75.122406

28. Amari, S. and J. Bornemann, "A pole-free modal field-matching technique for eigenvalue problems in electromagnetics," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 9, 1649-1653, 1997.
doi:10.1109/22.622938

29. Eleftheriades, G.V., A.S.Omar, L.P .B.Katehi, and G.M.Reb eiz, "Some important properties of waveguide junction generalized scattering matrices in the context of the mode matching technique," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 10, 1896-1903, 1994.
doi:10.1109/22.320771