1. Steinberg, B. Z. and Y. Leviatan, "On the use of wavelet expansions in the method of moments," IEEE Trans. Antennas Propagat., Vol. 41, No. 5, 610-619, 1993.
doi:10.1109/8.222280 Google Scholar
2. Sabetfakhri, K. and L. P. B. Katehi, "Analysis of integrated millimeter-wave and submillimeter-wave waveguides using orthonormal wavelet expansions," IEEE Trans. Microwave Theory Tech., Vol. 42, No. 12, 2412-2422, 1994.
doi:10.1109/22.339775 Google Scholar
3. Wagner, R. L. and W. C. Chew, "Study of wavelets for the solution of electromagnetic integral equations," IEEE Trans. Antennas and Propagat., Vol. 43, No. 8, 802-810, 1995.
doi:10.1109/8.402199 Google Scholar
4. Wei, X. C. and E. P. Li, "Fast solution for large scale electromagnetic scattering problems using wavelet transform and its precondition," Progress In Electromagnetics Research, Vol. 38, 253-267, 2002.
doi:10.2528/PIER02042602 Google Scholar
5. Krumpholz, M. and L. P. B. Katehi, "MRTD: new timedomain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 4, 555-571, 1996.
doi:10.1109/22.491023 Google Scholar
6. Fujii, M. and W. J. R. Hoefer, "Athree-dimensional Haar-waveletbased multiresolution analysis similar to the FDTD method — derivation and application," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2463-2475, 1998.
doi:10.1109/22.739236 Google Scholar
7. Dogaru, T. and L. Carin, "Multiresolution time-domain using CDF biorthogonal wavelets," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 5, 902-912, 2001.
doi:10.1109/22.920147 Google Scholar
8. Fujii, M. and W. J. R. Hoefer, "A wavelet formulation of the finite-difference method: Full-vector analysis of optical waveguide junctions," IEEE J. Quantum Electron., Vol. 37, No. 8, 1015-1029, 2001.
doi:10.1109/3.937391 Google Scholar
9. Cao, Q., K. K. Tamma, P. K. A. Wai, and Y. Chen, "RCS scattering analysis using the three-dimensional MRTD scheme," J. of Electromagn. Waves and Appl., Vol. 17, No. 12, 1683-1701, 2003.
doi:10.1163/156939303322760218 Google Scholar
10. Barba, I., J. Represa, M. Fujii, and W. J. R. Hoefer, "Multiresolution 2D-TLM technique using Haar wavelets," IEEE MTT-S Int. Microwave Symp. Dig., 243-246, 2000. Google Scholar
11. Pan, G. W., Wavelets in Electromagnetics and Device Modeling, John Wiley & Sons Inc., 2003.
12. Zhu, X., T. Dogaru, and L. Carin, "Analysis of the CDF biorthogonal MRTD method with application to PEC targets," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 9, 2015-2022, 2003.
doi:10.1109/TMTT.2003.815874 Google Scholar
13. Daubechies, I., Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics, 1992.
14. Tretiakov, Y., S. Ogurtsov, and G. Pan, "On samplingbiorthogonal time-domain scheme based on daubechies compactly supported wavelets," Progress In Electromagnetics Research, Vol. 47, 213-234, 2004.
doi:10.2528/PIER04020403 Google Scholar
15. Pereda, J. A., A. Vegas, L. F. Velarde, and O. Gonzalez, "An FDFD eigenvalue formulation for computing port solutions in FDTD simulators," Microwave and Opt. Tech. Letters, Vol. 45, No. 4, 1-3, 2005.
doi:10.1002/mop.20704 Google Scholar
16. Lui, M. L. and Z. Chen, "Adirect computation of propagation constant using compact 2-D full-wave eigen-based finite-difference frequency-domain technique," Int. Conf. on Comp. Electromagnetics and Its Applications, 2, 1999. Google Scholar
17. Asi, A. and L. Shafai, "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD," Electronics Letters, Vol. 28, 1451-1452, 1992. Google Scholar
18. Cangellaris, A. C., "Numerical stability and numerical dispersion of a compact 2-D/FDTD method used for the dispersion analysis of waveguides," IEEE Microwave and Guided Wave Letters, Vol. 3, 3-5, 1993.
doi:10.1109/75.180672 Google Scholar
19. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Book Company, 1961.