1. Chiou, H. K., C. Y. Chang, and H. H. Lin, "Balun design for uniplanar broad band double balanced mixer," Electronic Letters, Vol. 31, 2113-2114, 1995.
doi:10.1049/el:19951404 Google Scholar
2. Wen, C. P., "Coplanar waveguide: A surface transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105 Google Scholar
3. Ghione, G., "A CAD-oriented analytical model for the losses of general asymmetric coplanar lines in hybrid and monolithic MICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 1499-1510, 1993.
doi:10.1109/22.245668 Google Scholar
4. Chen, E. and S. Y. Chou, "Characteristic of coplanar transmission lines on multilayer substrates: Modelling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 939-945, 1997.
doi:10.1109/22.588606 Google Scholar
5. Bedair, S. S., "Characteristic of some asymmetrical coupled transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 108-110, 1984.
doi:10.1109/TMTT.1984.1132620 Google Scholar
6. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electronic Letters, Vol. 20, 179-181, 1984.
doi:10.1049/el:19840120 Google Scholar
7. Knorr, J. B. and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624 Google Scholar
8. Phatak, D. S. and A. P. Defonzo, "Dispersion characteristic of optically excited coplanar striplines," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 654-661, 1990.
doi:10.1109/22.54935 Google Scholar
9. Phatak, D. S., N. K. Das, and A. P. Defonzo, "Dispersion characteristic of optically excited coplanar striplines: Comprehensive full-wave analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 38, 1719-1730, 1990.
doi:10.1109/22.60020 Google Scholar
10. Deng, T. Q., M. S. Leong, P. S. Kooi, and T. S. Yeo, "Synthesis formulas for coplanar lines in hybrid and monolithic MICs," Electronic Letters, Vol. 32, 2253-2254, 1996.
doi:10.1049/el:19961521 Google Scholar
11. Yildiz, C., "New and very simple synthesis formulas for coplanar strip line," Microwave and Optical Technology Letters, Vol. 44, 199-202, 2005.
doi:10.1002/mop.20586 Google Scholar
12. Yildiz, C., A. Akdagli, and M. Turkmen, "Simple and accurate synthesis formulas obtained by using a differential evolution algorithm for coplanar strip lines," Microwave and Optical Technology Letters, Vol. 48, 1133-1137, 2006.
doi:10.1002/mop.21559 Google Scholar
13. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Comp., 1994.
14. Watson, M. and K. C. Gupta, "Design and optimization of CPW circuits using EM-ANN models for CPW components," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 2515-2523, 1997.
doi:10.1109/22.643868 Google Scholar
15. Sagiroglu, S. and C. Yildiz, "A multilayered perceptron neural network for a micro-coplanar strip line," Electromagnetics, Vol. 22, 553-563, 2002.
doi:10.1080/02726340290084111 Google Scholar
16. Yildiz, C., S. Gultekin, K. Guney, and S. Sagiroglu, "Neural models for the resonant frequency of electrically thin and thick circular microstrip antennas and the characteristic parameters of asymmetric coplanar waveguides backed with a conductor," AE ¨ U-International Journal of Electronics and Communications, Vol. 56, 396-406, 2002.
doi:10.1078/1434-8411-54100128 Google Scholar
17. Yildiz, C., S. Sagiroglu, and O. Saracoglu, "Neural models for coplanar waveguides with a finite dielectric thickness," Int. J. RF and Microwave CAE, Vol. 13, 438-446, 2003.
doi:10.1002/mmce.10104 Google Scholar
18. Yildiz, C., S. Sagiroglu, O. Saracoglu, and M. Turkmen, "Neural models for an asymmetric coplanar stripline with an infinitely wide strip," International Journal of Electronics, Vol. 90, 509-516, 2003.
doi:10.1080/00207210310001621554 Google Scholar
19. Yildiz, C., S. Sagiroglu, and M. Turkmen, "Neural model for coplanar waveguide sandwiched between two dielectric substrates," IEE Proc-Microwaves Antennas and Propagation, Vol. 151, 7-12, 2004.
doi:10.1049/ip-map:20040249 Google Scholar
20. Devabhaktuni, K., M. C. E. Yagoub, Y. Fang, J. Xu, and Q. J. Zhang, "Neural networks for microwave modeling: Model development issues and nonlinear modeling techniques," Int. J. RF and Microwave CAE, Vol. 11, 4-21, 2001.
doi:10.1002/1099-047X(200101)11:1<4::AID-MMCE2>3.0.CO;2-I Google Scholar
21. Watson, P. M., C. Choonsik, and K. C. Gupta, "Electromagneticartificial neural network model for synthesis of physical dimensions for multilayer asymmetric coupled transmission structures," Int. J. RF and Microwave CAE, Vol. 9, 175-186, 1999.
doi:10.1002/(SICI)1099-047X(199905)9:3<175::AID-MMCE4>3.0.CO;2-P Google Scholar
22. Salivahanan, S., R. Ramesh, S. Karthikeyan, S. Raju, and V. Abhaikumar, "CAD models for coplanar waveguide synthesis using artificial neural networks," IETE Technical Review, Vol. 18, 123-129, 2001. Google Scholar
23. Yildiz, C. and M. Turkmen, "Very accurate and simple CAD models based on neural networks for coplanar waveguide synthesis," Int. J. of RF and Microwave CAE, Vol. 15, 218-224, 2005.
doi:10.1002/mmce.20072 Google Scholar
24. Salivahanan, S., R. Ramesh, S. Karthikeyan, S. Raju, and V. Abhaikumar, "Artificial neural network models for coplanar stripline synthesis," IETE Journal of Education, Vol. 43, 27-31, 2002. Google Scholar
25. Hagan, M. T. and M. Menjah, "Training feedforward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, 989-993, 1994.
doi:10.1109/72.329697 Google Scholar
26. Mackay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 4, 415-447, 1992. Google Scholar
27. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1981.
28. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J., Vol. 7, 149-154, 1964.
doi:10.1093/comjnl/7.2.149 Google Scholar
29. Moller, M. F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, 525-533, 1993.
doi:10.1016/S0893-6080(05)80056-5 Google Scholar
30. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.
31. Christodoulou, C. G. and M. Georgiopoulos, Application of Neural Networks in Electromagnetics, Artech House, 2001.
32. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Wave and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917 Google Scholar
33. Jin, L. C., L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Wave and Applications, Vol. 20, 1061-1069, 2006.
doi:10.1163/156939306776930259 Google Scholar
34. Mohamed, M. D. A., E. A. Soliman, and M. A. El- Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Wave and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240 Google Scholar
35. Thomas, V., et al. "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Wave and Applications, Vol. 19, 2113-2121, 2005.
doi:10.1163/156939305775570477 Google Scholar