1. Davidson, D. B., Computational Electromagnetics for RF and Microwave Engineering, Cambridge University Press, 2005.
2. Miano, G. andF. Villone, "A surface integral formulation of Maxwell equations for topologically complex conducting domains," IEEE Trans. Antennas Propagat., Vol. 53, No. 12, 4001-4014, 2005.
doi:10.1109/TAP.2005.859898 Google Scholar
3. Yla-Oijala, P., M. Taskinen, and andJ. Sarvas, "Surface integral equation methodfor general composite material andd ielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar
4. Hanninen, I., M. Taskinen, and andJ. Sarvas, "Singularity subtraction integral formulae for surface integral equations with RWG, rooftop andh ybridbasis functions," Progress In Electromagnetics Research, Vol. 63, 243-278, 2006.
doi:10.2528/PIER06051901 Google Scholar
5. Shore, R. A. andA. D. Yaghjian, "A low-order-singularity electricfieldin tegral equation solvable with pulse basis functions andp oint matching," Progress In Electromagnetics Research, Vol. 52, 129-151, 2005.
doi:10.2528/PIER04073004 Google Scholar
6. Rao, S. M., D. R. Wilton, and andA. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
7. Cangellaris, A. C. andD. B. Wright, "Analysis of the numerical error causedb y the stair-steppedappro ximation of a conducting boundary in FDTD simulations of electromagnetic phenomena," IEEE Trans. Antennas Propagat., Vol. 39, No. 10, 1518-1525, 1991.
doi:10.1109/8.97384 Google Scholar
8. Lee, J. F., R. R. Panlandech, and R. Mittra, "Modeling threedimensional discontinuities in waveguides using non-orthogonal FDTD algorithm," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 2, 346-352, 1992.
doi:10.1109/22.120108 Google Scholar
9. Jurgens, T. G. andA. Taflove, "Three-dimensional contour FDTD modeling of scattering from single and multiple bodies," IEEE Trans. Antennas Propagat., Vol. 41, No. 12, 1703-1708, 1993.
doi:10.1109/8.273315 Google Scholar
10. Dey, S. andR. Mittra, "A modifiedlo cally conformal finite difference time-domain algorithm for modeling three-dimensional perfectly conducting bodies," Microwave Optical Tech. Lett., Vol. 17, No. 6, 349-352, 1998.
doi:10.1002/(SICI)1098-2760(19980420)17:6<349::AID-MOP4>3.0.CO;2-H Google Scholar