Vol. 71
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-02-20
Classification of Multi-Temporal SAR Images for Rice Crops Using Combined Entropy Decomposition and Support Vector Machine Technique
By
, Vol. 71, 19-39, 2007
Abstract
This paper presents a combined Entropy Decomposition and Support Vector Machine (EDSVM) technique for Synthetic Aperture Radar (SAR) image classification with the application on rice monitoring. The objective of this paper is to assess the use of multi-temporal data for the supervised classification of rice planting area based on different schedules. Since adequate priori information is needed for this supervised classification, ground truth measurements of rice fields were conducted at Sungai Burung, Selangor, Malaysia for an entire season from the early vegetative stage of the plants to the ripening stage. The theoretical results of Radiative Transfer Theory based on the ground truth parameters are used to define training sets of the different rice planting schedules in the feature space of Entropy Decomposition. The Support Vector Machine is then applied to the feature space to perform the image classification. The effectiveness of this algorithm is demonstrated using multi-temporal RADARSAT-1 data. The results are also used for comparison with the results based on information of training sets from the image using Maximum Likelihood technique, Entropy Decomposition technique and Support Vector Machine technique. The proposed method of EDSVM has shown to be useful in retrieving polarimetric information for each class and it gives a good separation between classes. It not only gives significant results on the classification, but also extends the application of Entropy Decomposition to cover multi-temporal data. Furthermore, the proposed method offers the ability to analyze single-polarized, multi-temporal data with the advantage of the unique features from the combined method of Entropy Decomposition and Support Vector Machine which previously only applicable to multipolarized data. Classification based on theoretical modeling is also one of the key components in this proposed method where the results from the theoretical models can be applied as the input of the proposed method in order to define the training sets.
Citation
Chue-Poh Tan Jun-Yi Koay Ka-Sing Lim Hong-Tat Ewe Hean-Teik Chuah , "Classification of Multi-Temporal SAR Images for Rice Crops Using Combined Entropy Decomposition and Support Vector Machine Technique," , Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903
http://www.jpier.org/PIER/pier.php?paper=07012903
References

1. Le Toan, T., H. Laur, E. Mougin, and A. Lopes, "Multitemporal and dual polarization observations of agricultural vegetation covers by X-band SAR images," IEEE Transactions on Geoscience and Remote Sensing, Vol. 27, 709-717, 1989.
doi:10.1109/TGRS.1989.1398243

2. Le Toan, T., F. Ribbes, L. F. Wang, N. Floury, K. H. Ding, J. A. Kong, M. Fujita, and T. Kurosu, "Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, 41-56, 1997.
doi:10.1109/36.551933

3. Ribbes, F. and T. Le Toan, "Rice field mapping and monitoring with RADARSAT data," International Journal of Remote Sensing, Vol. 20, No. 4, 745-765, 1999.
doi:10.1080/014311699213172

4. Shao, Y., X. Fan, H. Liu, J. Xiao, S. Ross, B. Brisco, R. Brown, and G. Staples, "Rice monitoring and production estimation using multitemporal RADARSAT," Remote Sensing of Environment, Vol. 76, 310-325, 2001.
doi:10.1016/S0034-4257(00)00212-1

5. Wang, L., J. A. Kong, K. H. Ding, T. Le Toan, F. Ribbes-Ballarin, and N. Floury, "Electromagnetic scattering model for rice canopy based on Monte Carlo simulation," Progress In Electromagnetics Research, Vol. 52, 153-171, 2005.
doi:10.2528/PIER04080601

6. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 1, 68-78, 1997.
doi:10.1109/36.551935

7. Cloude, S. R., J. Fortuny, J. M. Lopez-Sanchez, and A. J. Sieber, "Wide-band polarimetric radar inversion studies for vegetation layers," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2430-2441, 1999.
doi:10.1109/36.789640

8. Lopez-Martinez, C., E. Pottier, and S. R. Cloude, "Statistical assessment of eigenvector-based target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 9, 2058-2074, 2005.
doi:10.1109/TGRS.2005.853934

9. Cloude, S. R. and E. Pottier, "A review of target decomposition theorems in radar polarimetry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 2, 498-518, 1996.
doi:10.1109/36.485127

10. Lee, J. S., M. R. Grunes, and T. L. Ainsworth, "Unsupervised classification using polarimetric decomposition and the complex wishart distribution," IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 5, 2249-2259, 1999.
doi:10.1109/36.789621

11. Ferro-Famil, L. and E. Pottier, "Dual frequency polarimetric SAR DATA classification and analysis," Progress In Electromagnetics Research, Vol. 31, 247-272, 2001.
doi:10.2528/PIER00081601

12. Yahia, M. and Z. Belhadj, Unsupervised classification of polarimetric SAR images using neural networks, IEEE International Conference Information and Communication Technologies 2004, 335-337, 2004.

13. Fukada, S. and H. Hirosawa, Support vector machine classification of land cover: Application to polarimetric SAR data, IGARRS 2001, 2001.

14. Pal, M. and P. M. Mather, "Assessment of the effectiveness of support vector machines for hyperspectral data," Future Generation Computer Systems, 1215-1225, 2004.
doi:10.1016/j.future.2003.11.011

15. Angiulli, G., V. Barrile, and M. Cacciola, "SAR imagery classification using multi-class support vector machines," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 14, 1865-1872, 2005.
doi:10.1163/156939305775570558

16. Mercier, G. and F. Firard-Ardhuin, Oil slick detection by SAR imagery using support vector machines, Proc. of the IEEE Europe, Vol. 1, 90-95, 2005.

17. Camps-Valls, G., L. G´omez-Chova, J. Calpe, E. Soria, J. D. Martin, L. Alonso, and J. Moreno, "Robust support vector technique for hyperspectral data classification and knowledge discovery," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 7, 1530-1542, 2004.
doi:10.1109/TGRS.2004.827262

18. Camps-Valls, G. and L. Bruzzone, "Kernel-based techniques for hyperspectral image classification," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 6, 1351-1362, 2005.
doi:10.1109/TGRS.2005.846154

19. Christianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge Univ. Press, Cambridge, U.K., 2000.

20. Ewe, H. T. and H. T. Chuah, "Electromagnetic scattering from an electrically dense vegetation medium," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 5, 2093-2105, 2000.
doi:10.1109/36.868868

21. Vapnik, V., The Nature of Statistical Learning Theory, Springer Verlag, 1999.

22. Schölkopf, B. and A. J. Smola, Learning With Kernels, The MIT Press, Cambridge, Matssachusetts, London, England, 2002.

23. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM-based estimators for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

24. Vapnik, V., The Nature of Statistical Learning Theory, Springer Verlag, 1995.

25. Huang, C., L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machine for land cover classification," International. Journal of Remote Sensing, Vol. 23, 725-749, 2002.
doi:10.1080/01431160110040323

26. Knerr, C., L. Personnaz, and G. Dreyfus, "Single-layer learning revisited: a stepwise procedure for building and training a neural network," Neurocomputing: Algorithms, 1990.

27. Friedman, J., "Another approach to polychotomous classification," Technical report, 1996.

28. Kreßel, U., "Pairwise classification and support vector machines," Advances in Kernel Methods — Support Vector Learning, 1999.

29. Hsu, C. W. and C. J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Transactions on Neural Networks, Vol. 13, No. 2, 415-425, 2002.
doi:10.1109/72.991427

30. Chuah, H. T., S. Tjuatja, A. K. Fung, and J. W. Bredow, "Radar backscatter from a dense discrete random medium," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 4, 892-900, 1997.
doi:10.1109/36.602531

31. Albert, M. D., T. E. Tan, H. T. Ewe, and H. T. Chuah, "A theoretical and measurement study of sea ice and ice shelf in Antarctica as electrically dense media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 14, 1973-1981, 2005.
doi:10.1163/156939305775570639

32. Ewe, H. T. and H. T. Chuah, "A study of Fresnel scattered field for non-spherical discrete scatterers," Progress In Electromagnetics Research, Vol. 25, 189-222, 2000.
doi:10.2528/PIER99060701

33. Chandrasekhar, S., Radiative Transfer, Dover, New York, 1960.

34. Koay, J. Y., C. P. Tan, H. T. Ewe, H. T. Chuah, and S. Bahari, Theoretical modeling and measurement comparison of season-long rice field monitoring, Proceedings of Progress In Electromagnetics Research Symposium 2005, 22-26, 2005.

35. Ulaby, F. T., R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Vol. III, Vol. III, Artech House, Norwood, MA, 1986.

36. Lopes, A., E. Mougin, T. Le Toan, M. A. Karam, and A. K. Fung, "A simulation study on the influence of leaf orientation on elliptically polarized microwave propagation in a coniferous forest," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 7, 753-776, 1991.