1. Rao, S. M. and D. R. Wilton, "Transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 56-61, 1991.
doi:10.1109/8.64435 Google Scholar
2. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1625-1634, 2000.
doi:10.1109/8.899679 Google Scholar
3. Jung, B. H. and T. K. Sarkar, "Time-domain electric-field integral equation with central finite difference," Microwave Opt. Technol. Lett., Vol. 31, No. 6, 429-435, 2001.
doi:10.1002/mop.10055 Google Scholar
4. Jung, B. H and T. K. Sarkar, "Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects," Microwave Opt. Technol. Lett., Vol. 34, No. 4, 289-296, 2002.
doi:10.1002/mop.10440 Google Scholar
5. Vechinski, D. A. and S. M. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 661-665, 1992.
doi:10.1109/8.144600 Google Scholar
6. Hu, J.-L., C. H. Chan, and Y. Xu, "A new temporal basis function for the time-domain integral equation method," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 11, 465-466, 2001.
doi:10.1109/7260.966043 Google Scholar
7. Weile, D. S., G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen, "A novel scheme for the solution of the timedomain integral equations of electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 1, 283-295, 2004.
doi:10.1109/TAP.2003.822450 Google Scholar
8. Manara, G., A. Monorchio, and R. Reggiannini, "A space-time discretization criterion for a stable time-marching solution of the electric field integral equation," IEEE Trans. Antennas and Propagat., Vol. 45, No. 3, 527-532, 1997.
doi:10.1109/8.558668 Google Scholar
9. Davies, P. J., "Numerical stability and convergence of approximations of retarded potential integral equations," SIAM J. Numer. Anal., Vol. 31, No. 6, 856-875, 1994.
doi:10.1137/0731046 Google Scholar
10. Davies, P. J., "On the stability of time-marching schemes for the general surface electric-field integral equation," IEEE Trans. Antennas Propagat., Vol. 44, No. 11, 1467-1473, 1996.
doi:10.1109/8.542071 Google Scholar
11. Shankar, B., A. A. Ergin, K. Aygun, and E. Michielssen, "Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1064-1074, 2000.
doi:10.1109/8.876325 Google Scholar
12. Rynne, B. P. and P. D. Smith, "Stability of time marching algorithms for the electric field equation," J. Electromagn. Waves Applicat., Vol. 4, 1181-1205, 1990. Google Scholar
13. Davies, P. J., "A stability analysis of a time marching scheme for the general surface electric field integral equation," Appl. Nume. Math., Vol. 27, 33-57, 1998.
doi:10.1016/S0168-9274(97)00107-4 Google Scholar
14. Tijhuis, A. G., "Toward a stable marching-on-in-time method for two-dimensional transient electromagnetic scattering problems," Radio Sci., Vol. 19, 1311-1317, 1984. Google Scholar
15. Sadigh, A. and E. Arvas, "Treating the instabilities in marchingon- in-time method from a different perspective," IEEE Trans. Antennas Propagat., Vol. 41, No. 12, 1695-1702, 1993.
doi:10.1109/8.273314 Google Scholar
16. Yla-Oijala, P., M. Taskiene, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301 Google Scholar
17. Hanninen, I., M. Taskinen, and J. Sarvas, "Singularity subtraction integral formulae for surface integral equations with RWG, rooftop and hybrid basis functions," Progress In Electromagnetics Research, Vol. 63, 243-278, 2006.
doi:10.2528/PIER06051901 Google Scholar
18. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MoM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101 Google Scholar
19. Chung, Y.-S., T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett., Vol. 35, No. 6, 493-499, 2002.
doi:10.1002/mop.10647 Google Scholar
20. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001 Google Scholar
21. Jung, B. H., T. K. Sarkar, Y.-S. Chung, M. Salazar-Palma, and Z. Ji, "Time-domain combined field integral equation using Laguerre polynomials as temporal basis functions," Int. J. Nume. Model., Vol. 17, No. 3, 251-268, 2004.
doi:10.1002/jnm.538 Google Scholar
22. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 39, 113-142, 2004.
doi:10.2528/PIER04022304 Google Scholar
23. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502 Google Scholar
24. Poularikas, A. D., The Transforms and Applications Handbook, IEEE Press, 1996.
25. Gradshteyn, I. S. and I. M. Ryzhik, Table of Integrals, Series, 1980.
26. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar