1. Bradley, C. J., P. J. Collins, J. Fortuny-Guasch, M. L. Hastriter, G. Nesti, A. J. Terzuoli, Jr. and K. S. Wilson, "An investigation of bistatic calibration objects," IEEE Trans. Geos. Rem. Sens., Vol. 43, No. 10, 2177-2184, 2005.
doi:10.1109/TGRS.2005.855138 Google Scholar
2. Lo, Y. C., "Y. C. and B. K. Chung Polarimetric RCS calibration using reference reflectors," J. Electromagn. Waves and Applicat., Vol. 19, No. 13, 1749-1759, 2005.
doi:10.1163/156939305775696766 Google Scholar
3. Van Zyl, J. J., "Calibration of polarimetric radar images using only image parameters and trihedral corner reflectors responses," IEEE Trans. Geos. Rem. Sens., Vol. 28, No. 3, 337-348, 1990.
doi:10.1109/36.54360 Google Scholar
4. Corona, P., G. Ferrara, C. Gennarelli, and G. Riccio, "A physical optics solution for the backscattering by triangularly shaped trihedral corners," Ann. Telecom., 557-562, 1995. Google Scholar
5. Polycarpou, A. C., C. A. Balanis, and C. R. Birtcher, "Radar cross section of trihedral corner reflectors using PO and MEC," Ann. Telecom., 510-516, 1995. Google Scholar
6. Sinclair, G., "The transmission and reception of elliptically polarized waves," Proc. IRE, Vol. 38, 148-151, 1950.
7. Germond, A-L., E. Pottier, and J. Saillard, "Bistatic radar polarimetry theory," Ultra-Wideband Radar Technology, 379-414, 2000. Google Scholar
8. Kubicke, G.C. Bourlier, and J. Saillard, "A physical optics solution for bistatic RCS of triangularly shaped trihedral corners for any incidence and observation angles," EUCAP Conference, 6-10, 2006.
9. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," J. Electromagn. Waves and Applicat., Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321 Google Scholar
10. Van Tonder, J. J. and U. Jakobus, "Fast multipole solution of metallic and dielectric scattering problems in FEKO," IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 3-7, 2005.
11. Michaeli, A., "Equivalent edge currents of arbitrary aspects of observation," IEEE Trans. Ant. Prop., Vol. 32, No. 3, 252-258, 1984.
doi:10.1109/TAP.1984.1143303 Google Scholar
12. Michaeli, A., "Elimination of infinities in equivalent edge currents, Parts I: Fringe currents," IEEE Trans. Ant. Prop., Vol. 34, No. 7, 912-918, 1986.
doi:10.1109/TAP.1986.1143913 Google Scholar
13. Mitzner, K. M., "Incremental length diffraction coefficients," Tech.Rep.No.AFAL-TR-73-296, No. ''Tech.Rep.AFAL-TR-73-296, 73-296, 1974. Google Scholar
14. Knott, E. F., "The relationship between Mitzner's ILDCand Michaeli's equivalent currents," IEEE Trans. Ant. Prop., Vol. 33, No. 1, 112-114, 1985.
doi:10.1109/TAP.1985.1143482 Google Scholar
15. FEKO-EM Software and Systems, www.feko.info, Technopark- Stellenbosch, South Africa..
16. Ross, R. A., "R. A. and M. Hamid Backscattering from isosceles triangular metallic plates," J. Electromagn. Waves and Applicat., Vol. 19, No. 13, 1177-1786, 2005. Google Scholar
17. Michaeli, A., "Equivalent currents for second-order diffraction by the edges of perfectly conducting polygonal surfaces," IEEE Trans. Ant. Prop., Vol. 35, No. 2, 183-190, 1987.
doi:10.1109/TAP.1987.1144077 Google Scholar