Vol. 71
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-07
Polarimetric Bistatic Signature of a Faceted Octahedron in High-Frequency Domain
By
Progress In Electromagnetics Research, Vol. 71, 173-209, 2007
Abstract
In this paper, the bistatic polarimetric signature of a perfectly conducting faceted octahedron with high dimensions with respect to the wavelength, is considered and a closed form solution for its fast computation is developed. This particular object, composed by eight triangularly shaped trihedral corner reflectors, should exhibit a large bistatic and monostatic Radar Cross Section (RCS) over a wide angular range. Scattering from a Trihedral Corner Reflector (TCR) is dominated by single, double and triple reflections. First, shadowed areas in excitation and observation are evaluated with the help of Geometrical Optics (GO). A Physical Optics (PO) integration is performed on each plate for the computation of scattered fields, taking into account the shadowed surfaces. GO is used to take into account the lighting of each face for initial reflections of double and triple reflections. First-order diffractions, which are based on the fringe current expressions for the exterior edges of the TCR are also included in the analysis with the help of Method of Equivalent Currents / Incremental Length Diffraction Coefficients (MEC/ILDC). This permit us to calculate fast the bistatic signature of a TCR for arbitrary incidence and observation angles. The polarimetric bistatic signature of an octahedral reflector is then obtained, and results are discussed. Finally, several prospects are explained
Citation
Gildas Kubicke Christophe Bourlier Joseph Saillard , "Polarimetric Bistatic Signature of a Faceted Octahedron in High-Frequency Domain," Progress In Electromagnetics Research, Vol. 71, 173-209, 2007.
doi:10.2528/PIER07022801
http://www.jpier.org/PIER/pier.php?paper=07022801
References

1. Bradley, C. J., P. J. Collins, J. Fortuny-Guasch, M. L. Hastriter, G. Nesti, A. J. Terzuoli, Jr. and K. S. Wilson, "An investigation of bistatic calibration objects," IEEE Trans. Geos. Rem. Sens., Vol. 43, No. 10, 2177-2184, 2005.
doi:10.1109/TGRS.2005.855138

2. Lo, Y. C., "Y. C. and B. K. Chung Polarimetric RCS calibration using reference reflectors," J. Electromagn. Waves and Applicat., Vol. 19, No. 13, 1749-1759, 2005.
doi:10.1163/156939305775696766

3. Van Zyl, J. J., "Calibration of polarimetric radar images using only image parameters and trihedral corner reflectors responses," IEEE Trans. Geos. Rem. Sens., Vol. 28, No. 3, 337-348, 1990.
doi:10.1109/36.54360

4. Corona, P., G. Ferrara, C. Gennarelli, and G. Riccio, "A physical optics solution for the backscattering by triangularly shaped trihedral corners," Ann. Telecom., 557-562, 1995.

5. Polycarpou, A. C., C. A. Balanis, and C. R. Birtcher, "Radar cross section of trihedral corner reflectors using PO and MEC," Ann. Telecom., 510-516, 1995.

6. Sinclair, G., The transmission and reception of elliptically polarized waves, Proc. IRE, Vol. 38, 148-151, 1950.

7. Germond, A-L., E. Pottier, and J. Saillard, "Bistatic radar polarimetry theory," Ultra-Wideband Radar Technology, 379-414, 2000.

8. Kubicke, G., C. Bourlier, and J. Saillard, A physical optics solution for bistatic RCS of triangularly shaped trihedral corners for any incidence and observation angles, EUCAP Conference, 6-10, 2006.

9. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," J. Electromagn. Waves and Applicat., Vol. 20, No. 8, 1081-1092, 2006.
doi:10.1163/156939306776930321

10. Van Tonder, J. J. and U. Jakobus, Fast multipole solution of metallic and dielectric scattering problems in FEKO, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 3-7, 2005.

11. Michaeli, A., "Equivalent edge currents of arbitrary aspects of observation," IEEE Trans. Ant. Prop., Vol. 32, No. 3, 252-258, 1984.
doi:10.1109/TAP.1984.1143303

12. Michaeli, A., "Elimination of infinities in equivalent edge currents, Parts I: Fringe currents," IEEE Trans. Ant. Prop., Vol. 34, No. 7, 912-918, 1986.
doi:10.1109/TAP.1986.1143913

13. Mitzner, K. M., "Incremental length diffraction coefficients," Tech.Rep.No.AFAL-TR-73-296, No. ''Tech.Rep.AFAL-TR-73-296, 73-296, 1974.

14. Knott, E. F., "The relationship between Mitzner's ILDCand Michaeli's equivalent currents," IEEE Trans. Ant. Prop., Vol. 33, No. 1, 112-114, 1985.
doi:10.1109/TAP.1985.1143482

15. FEKO-EM Software and Systems, www.feko.info, Technopark- Stellenbosch, South Africa..

16. Ross, R. A., "R. A. and M. Hamid Backscattering from isosceles triangular metallic plates," J. Electromagn. Waves and Applicat., Vol. 19, No. 13, 1177-1786, 2005.

17. Michaeli, A., "Equivalent currents for second-order diffraction by the edges of perfectly conducting polygonal surfaces," IEEE Trans. Ant. Prop., Vol. 35, No. 2, 183-190, 1987.
doi:10.1109/TAP.1987.1144077