1. Foldy, L. L., "The multiple scattering of waves I. General theory of isotropic scattering by randomly distributed scatterers," Phys. Rev., Vol. 67, No. 2, 107-119, 1945.
doi:10.1103/PhysRev.67.107 Google Scholar
2. Lax, M., "Multiple scattering of waves," Rev. Mod. Phys., Vol. 23, No. 10, 287-310, 1951.
doi:10.1103/RevModPhys.23.287 Google Scholar
3. Twersky, V., "Multiple scattering of radiation by an arbitrary configuration of parallel cylinders," J. Acoust. Soc. Am, Vol. 24, No. 1, 42-46, 1952.
doi:10.1121/1.1906845 Google Scholar
4. Waterman, P. C., "New formulation of acoustic scattering," J. Acoust. Soc. Am., Vol. 45, No. 6, 1417-1429, 1969.
doi:10.1121/1.1911619 Google Scholar
5. Waterman, P. C., "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D, Vol. 3, No. 2, 825-829, 1971.
doi:10.1103/PhysRevD.3.825 Google Scholar
6. Peterson, B. and S. Ström, "T-matrix for electromagnetic scattering from an arbitrary number of scatterers and representation of E(3)," Phys. Rev. D, Vol. 8, No. 11, 3661-3678, 1973.
doi:10.1103/PhysRevD.8.3661 Google Scholar
7. Chew, W. C., C. C. Lu, and Y. M. Wang, "Efficient computation of three-dimensional scattering of vector electromagnetic waves," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1528-1537, 1994. Google Scholar
8. Tayeb, G. and D. Maystre, "Rigorous theoretical study of finitesize two-dimensional photonic crystals doped by microcavities," J. Opt. Soc. Am. A, Vol. 14, No. 12, 3323-3332, 1997. Google Scholar
9. Yonekura, J., M. Ikeda, and T. Baba, "Analysis of finite 2- D photonic crystals of columns and lightwave devices using the scattering matrix method," J. Lightwave Tech., Vol. 17, No. 8, 1500-1508, 1999.
doi:10.1109/50.779177 Google Scholar
10. Li, E. P., Q. X. Wang, Y. J. Zhang, and B. L. Ooi, "Analysis of finite-size coated electromagnetic bandgap structure by an efficient scattering matrix method," IEEE J. Selected Topics Quantum Elect., Vol. 11, No. 4, 485-492, 2005.
doi:10.1109/JSTQE.2005.845619 Google Scholar
11. Kuo, C.-H. and Z. Ye, "Negative-refraction like behavior revealed by arrays of dielectric cylinders," Phys. Rev. E, Vol. 70, 026608, 2004.
doi:10.1103/PhysRevE.70.026608 Google Scholar
12. Shooshtari, A. and A. R. Sebak, "Electromagnetic scattering by parallel metamaterial cylinders," Progress In Electromagnetics Research, Vol. 57, 165-177, 2006.
doi:10.2528/PIER05071103 Google Scholar
13. Boscolo, S. and M. Midrio, "Three-dimensional multiplescattering technique for the analysis of photonic-crystal slabs," J. Lightwave Tech., Vol. 22, No. 12, 2778-2786, 2004.
doi:10.1109/JLT.2004.833276 Google Scholar
14. Talebi, N., M. Shahabadi, and C. Hafner, "Analysis of a lossy microring using the generalized multipole technique," Progress In Electromagnetics Research, Vol. 66, 287-299, 2006.
doi:10.2528/PIER06112801 Google Scholar
15. Koc, S. and W. C. Chew, "Calculation of acoustical scattering from a cluster of scatterers," J. Acoust. Soc. Am, Vol. 103, No. 2, 721-734, 1998.
doi:10.1121/1.421231 Google Scholar
16. Gumerov, N. A. and R. Duraiswami, "Computation of scattering from clusters of spheres using the fast multipole method," J. Acoust. Soc. Am, Vol. 117, No. 4, 1744-1761, 2005.
doi:10.1121/1.1853017 Google Scholar
17. Cheng, H., W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge, J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao, "A wideband fast multipole method for the Helmholtz equation in three dimensions," J. Comput. Phys., Vol. 216, No. 7, 300-325, 2006.
doi:10.1016/j.jcp.2005.12.001 Google Scholar
18. Gumerov, N. A. and R. Duraiswami, Fast Multipol Methods for the Helmholtz Equation in Three Dimensions, Elsevier Ltd., 2004.
19. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C Google Scholar
20. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electomagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, 1992.
doi:10.1109/8.144597 Google Scholar
21. Lu, C. C. and W. C. Chew, "Fast algorithm for solving hybrid integral equations," IEE Proc.-H, Vol. 140, No. 12, 455-460, 1993.
22. Chew, W. C., J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
23. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
24. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 13, 631-644, 1992.
doi:10.1137/0913035 Google Scholar
25. Ohnuki, S. and W. C. Chew, "Numerical accuracy of multipole expansion for 2-D MLFMA," IEEE Trans. Antennas Propagat., Vol. 51, No. 8, 1883-1890, 2003.
doi:10.1109/TAP.2003.815425 Google Scholar
26. Felbacq, D., G. Tayeb, and D. Maystre, "Scattering by a random set of parallel cylinders," J. Opt. Soc. Am. A, Vol. 11, No. 9, 2526-2538, 1994. Google Scholar
27. Elsherbeni, A. Z. and M. Hamid, "Scattering by parallel conducting circular cylinders," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 3, 355-358, 1987.
doi:10.1109/TAP.1987.1144098 Google Scholar
28. Ragheb, H. A. and M. Hamid, "Simulation of a cylindrical reflector by conducting circular cylinders," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 3, 349-353, 1987.
doi:10.1109/TAP.1987.1144096 Google Scholar
29. Liu, T., A. R. Zakharian, M. Fallahi, V. Moloney, and M. Mansuripur, "Multimode Interference-based photonic crystal waveguide power splitter," J. Lightwave Tech., Vol. 22, No. 12, 2842-2846, 2004.
doi:10.1109/JLT.2004.834479 Google Scholar