1. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.
2. James, J. R., P. S. Hall, and C. Wood, Microstrip Antennas- Theory and Design, Peter Peregrisnus Ltd., 1981.
3. Gupta, K. C. and A. Benalla (eds.), Microstrip Antenna Design, Artech House, 1988.
4. James, J. R. and P. S. Hall, Handbook of Microstrip Antennas, No. 28, IEE Electromagnetic Wave Series, 1989.
5. Bhartia, P., K. V. S. Rao, and R. S. Tomar (eds.), Millimeter- Wave Microstrip and Printed Circuit Antennas, Artech House, 1991.
6. Hirasawa, K. and M. Haneishi, Analysis, Design, and Measurement of Small and Low-Profile Antennas, Artech House, 1992.
7. Pozar, D. M. and D. H. Schaubert (eds.), Microstrip Antennas— The Analysis and Design of Microstrip Antennas and Arrays, IEEE Press, 1995.
8. Zurcher, J. F. and F. E. Gardiol, Broadband Patch Antennas, Artech House, 1995.
9. Sainati, R. A., CAD of Microstrip Antennas for Wireless Applications, Artech House, 1996.
10. Lee, K. F. and W. Chen, Advances in Microstrip and Printed Antennas, John Wiley and Sons, 1997.
11. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
12. Cooray, F. R. and J. S. Kot, "Analysis of radiation from a cylindrical-rectangular microstrip patch antenna loaded with a superstrate and an air gap, using the electric surface current model," Progress In Electromagnetics Research, Vol. 67, 135-152, 2007.
doi:10.2528/PIER06080304 Google Scholar
13. Sim, C. Y. D., J. S. Row, and Y. Y. Liou, "Experimental studies of a shorted triangular microstrip antenna embedded with dual V-shaped slots," J. Electromagnetic Waves and Applications, Vol. 21, No. 1, 15-24, 2007.
doi:10.1163/156939307779391777 Google Scholar
14. Pirhadi, A., M. Hakkak, and F. Keshmiri, "Using electromagnetic bandgap superstrate to enhance the bandwidth of probe-fed microstrip antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801 Google Scholar
15. Bao, X. L. and M. J. Ammann, "Comparison of several novel annular-ring microstrip patch antennas for circular polarization," J. Electromagnetic Waves and Applications, Vol. 20, No. 11, 1427-1438, 2006.
doi:10.1163/156939306779274336 Google Scholar
16. Qian, Z. H., R. S. Chen, K. W. Leung, and H. W. Yang, "FDTD analysis of microstrip patch antenna covered by plasma sheath," Progress In Electromagnetics Research, Vol. 52, 173-183, 2005.
doi:10.2528/PIER04080901 Google Scholar
17. Liu, S. F., S. D. Liu, and B. R. Guan, "Ano vel wideband hightemperature superconducting microstrip antenna," J. Electromagnetic Waves and Applications, Vol. 19, No. 15, 2073-2079, 2005.
doi:10.1163/156939305775570404 Google Scholar
18. Luk, K. M.W. Y. Tam, and C. L. Yip, "Analysis of circular microstrip antennas with superstrate," IEE Proc. Microwave, Vol. 136, No. 3, 261-262, 1989.
19. Verma, A. K. and Z. Rostamy, "Modified Wolff model for determination of resonance frequency of dielectric covered circular microstrip patch antenna," Electronics Lett., Vol. 27, No. 24, 2234-2236, 1991.
doi:10.1049/el:19911382 Google Scholar
20. Fan, Z. and K. F. Lee, "Input impedance of circular-disk microstrip antennas with a dielectric cover," Microwave Opt. Technol. Lett., Vol. 5, No. 13, 701-704, 1992. Google Scholar
21. Lee, K. F. and Z. Fan, "CAD formulas for resonant frequencies of TM11 mode of circular patch antenna with or without superstrate," Microwave Opt. Technol. Lett., Vol. 7, No. 12, 270-273, 1994. Google Scholar
22. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 488-497, 1999.
doi:10.1109/22.754883 Google Scholar
23. Guha, D. and J. Y. Siddiqui, "Resonant frequency of circular microstrip antenna covered with dielectric superstrate," IEEE Trans. Antennas Propagat., Vol. 51, No. 7, 1649-1652, 2003.
doi:10.1109/TAP.2003.813620 Google Scholar
24. Bouttout, F., F. Benabdelaziz, and A. Khellaf, "Closedform Hankel transforms for circular disk basis modes involving Chebyshev polynomials and edge condition," Electronics Lett., Vol. 36, No. 10, 866-867, 2000.
doi:10.1049/el:20000682 Google Scholar
25. Guha, D., "Resonant frequency of circular microstrip antennas with and without air gaps," IEEE Trans. Antennas Propagat., Vol. 49, 55-59, 2001.
doi:10.1109/8.910530 Google Scholar
26. Bernhard, J. T. and C. J. Tousignant, "Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates," IEEE Trans. Antennas Propagat., Vol. 47, 302-308, 1999.
doi:10.1109/8.761070 Google Scholar
27. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Systems, Vol. 23, 665-685, 1993. Google Scholar
28. Jang, J.-S. R., C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, 1997.
29. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates," J. Electromagnetic Waves and Applications, Vol. 18, No. 1, 23-39, 2004.
doi:10.1163/156939304322749599 Google Scholar
30. Guney, K. and N. Sarikaya, "Computation of resonant frequency for equilateral triangular microstrip antennas using the adaptive neuro-fuzzy inference system," Int. J. RF and Microwave Computer-Aided Eng., Vol. 14, 134-143, 2004.
doi:10.1002/mmce.10125 Google Scholar
31. Guney, K. and N. Sarikaya, "Input resistance calculation for circular microstrip antennas using adaptive neuro-fuzzy inference system," Int. J. Infrared and Millimeter Waves, Vol. 25, 703-716, 2004.
doi:10.1023/B:IJIM.0000020756.48454.31 Google Scholar
32. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for computing the resonant frequency of circular microstrip antenna," The Applied Computational Electromagnetics Society (ACES) J., Vol. 19, No. 3, 188-197, 2004. Google Scholar
33. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the computation of the bandwidth of electrically thin and thick rectangular microstrip antennas," Electrical Eng., Vol. 88, 201-210, 2006.
doi:10.1007/s00202-004-0271-1 Google Scholar
34. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for computing the physical dimensions of electrically thin and thick rectangular microstrip antennas," Int. J. Infrared and Millimeter Waves, Vol. 27, No. 2, 219-233, 2006. Google Scholar
35. Guney, K. and N. Sarikaya, "A hybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 55, No. 3, 659-668, 2007.
doi:10.1109/TAP.2007.891566 Google Scholar
36. Turkmen, I. and K. Guney, "Cheap joint probabilistic data association with adaptive neuro-fuzzy inference system state filter for tracking multiple targets in cluttered environment," AEU — Int. J. Electronics and Commun., Vol. 58, No. 5, 349-357, 2004.
doi:10.1078/1434-8411-54100254 Google Scholar
37. Turkmen, I. and K. Guney, "Tabu search tracker with adaptive neuro-fuzzy inference system for multiple target tracking,". Google Scholar