Vol. 74
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-11
Pad Modeling by Using Artificial Neural Network
By
, Vol. 74, 167-180, 2007
Abstract
An approach for the PAD modeling technique for microwave on wafer measurement based on a combination of the conventional equivalent circuit model and artificial neural network (ANN) is presented in this paper. The PAD capacitances are determined from S parameters of different size of PAD test structure based on EM (electromagnetic) simulation and described as functions of the dimensions of the PAD structure by using sub-ANN. Good agreement is obtained between ANN-based modeling and EM simulated results up to 40 GHz. The de-embedding procedure for PHEMT device utilizing the ANN based PAD model is demonstrated.
Citation
Xiuping Li Jianjun Gao , "Pad Modeling by Using Artificial Neural Network," , Vol. 74, 167-180, 2007.
doi:10.2528/PIER07041201
http://www.jpier.org/PIER/pier.php?paper=07041201
References

1. Kim, C. S. and J.-W. Park, "Gate layout and bonding pad structure of a RF n-MOSFET for low noise performance," IEEE Electron Device Letter, Vol. 21, No. 12, 607-609, 2000.
doi:10.1109/55.887481

2. Sang, L. P., et al., "High-isolation bonding pad design for silicon RFIC up to 20 GHz," IEEE Electron Device Letters, Vol. 24, No. 9, 601-603, 2003.
doi:10.1109/LED.2003.816589

3. Troels, E. K., "Shield-based microwave on-wafer device measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 6, 1039-1044, 2001.
doi:10.1109/22.925488

4. Han, S., J. Kim, Dean, and P. Neikirk, "Impact ofpad de-embedding on the extraction ofin terconnect parameters," 2006IEEE APS, Vol. 1, 76-81, 2006.

5. Ewout, P., V. Dominique, M. M.-P. Schreures, and C. Van Dinther, "Improved three-step de-embedding method to accurately account for the influence of pad parasitics in silicon onwafer RF test-structures," IEEE Transactions on Electon Devices, Vol. 48, No. 4, 737-742, 2001.
doi:10.1109/16.915712

6. Su, C. Y., et al., "Effect ofCoplanar probe pad design on noise figures of0.35 um MOSFETS," Electronics Letters, Vol. 36, No. 15, 1280-1281, 2000.
doi:10.1049/el:20000904

7. Adem, A. and M. Ismail, "Pad de-embedding in RF CMOS," Circuit and System, 8-11, 2001.

8. Cascade Microtech, Inc., "On-wafer vector network analyzer calibration and measurements," Application Note..

9. Cascade Microtech, Inc., "Introduction to bipolar device GHz measurement techniques," Application Note..

10. Cascade Microtech, Inc., "Layout rules for GHz-probing," Application Note..

11. Van Wijnen, P. J., et al., A new straightforward calibration and correction procedure for on wafer high frequency s-parameter measurements (45 MHz-18 GHz), Proc. 1987 Bipolar Circuits and Technology Meeting, 70-73, 1987.

12. Fraser, A., R. Gleason, and E. W. Strid, GHz on-silicon wafer probing calibration methods, Proc. 1988 Bipolar Circuits and Technology Meeting, 154-157, 1988.

13. Li, X. P., J. J. Gao, and G. Boeck, "Printed dipole antenna design by artificial neural network modeling for RFID application," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 16, No. 6, 607-611, 2006.
doi:10.1002/mmce.20183

14. Li, X. P., J. J. Gao, J.-G. Yook, and X. D. Chen, Bandpass filter design by artificial neural network modeling, Asia-Pacific Microwave Conference, Vol. 2, 713-716, 2005.

15. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 9, 1161-1174, 2006.
doi:10.1163/156939306777442917

16. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1061-1069, 2006.
doi:10.1163/156939306776930259

17. Mohamed, M. D. A., E. A. Soliman, and M. A. El- Gamal, "Optimization and characterization ofelectromagnetically coupled patch antennas using RBF neural networks," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1101-1114, 2006.
doi:10.1163/156939306776930240

18. Ayestarn, R. G. and F. Las-Heras, "Near field to far field transformation using neural networks and source reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2201-2213, 2006.
doi:10.1163/156939306779322594

19. Zhang, Q. J., K. Gupta, C. Devabhaktuni, and K. Vijay, "Artificial neural networks for RF and microwave design—from theory to practice," IEEE Trans. Microwave Theory Tech., Vol. 51, 1339-1350, 2003.
doi:10.1109/TMTT.2003.809179

20. Li, X. P., J. J. Gao, and G. Boeck, "Microwave nonlinear device modeling using artificial neural network," Semicond. Sci. Technol., Vol. 21, 833-840, 2006.
doi:10.1088/0268-1242/21/7/001