1. Holliday, D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward: A new method for computing low-grazing angle scattering," IEEE Trans. on Anten. and Propagat., Vol. 44, No. 5, 722-729, 1996.
doi:10.1109/8.496263 Google Scholar
2. Kapp, D. A. and G. S. Brown, "A new numerical method for rough surface scattering calculations," IEEE Trans. on Anten. and Propagat., Vol. 44, No. 5, 711-721, 1996.
doi:10.1109/8.496258 Google Scholar
3. Chou, H. T. and J. T. Johnson, "A novel acceleration algorithm for the computation of scattering, from rough surfaces with the forward-backwards method," Radio Science, Vol. 33, No. 5, 1277-1287, 1998.
doi:10.1029/98RS01888 Google Scholar
4. Li, Z. X. and Y. Q. Jin, "Numerical simulation of bistatic scattering from a fractal rough surface using the forward-backward method," Electromagnetics, Vol. 22, No. 3, 191-207, 2002.
doi:10.1080/02726340252886465 Google Scholar
5. Holliday, D., L. L. DeRaad, and G. J. St-Cyr, "Forward-backward method for scattering from imperfect conductors," IEEE Trans. on Anten. and Propagat., Vol. 46, No. 1, 101-107, 1998.
doi:10.1109/8.655456 Google Scholar
6. Chou, H. T. and J. T. Johnson, "Formulation of forward-backward method using novel spectral acceleration for the modeling of scattering from impedance rough surfaces," IEEE Transactions on Geosicence and Remote Sensing, Vol. 38, No. 1, 605-607, 2000.
doi:10.1109/36.823954 Google Scholar
7. Burkholder, R. J. and T. Lundin, "Forward-backward iterative physical optics algorithm for computing the RCS of openended cavities antennas and propagation," IEEE Trans. on Anten. and Propagat., Vol. 53, No. 2, 793-799, 2005.
doi:10.1109/TAP.2004.841317 Google Scholar
8. Zhang, P. F. and S. X. Gong, "Improvement on the forwardbackward iterative physical optics algorithm applied to computing the RCS of large open-ended cavities," Journal of Electromagnetic Wave and Application, Vol. 21, No. 4, 457-469, 2007.
doi:10.1163/156939307779367297 Google Scholar
9. Jin, Y. Q. and Z. X. Li, "Bistatic scattering and transmission through a fractal rough dielectric surface using the forward and backward method with spectrum acceleration algorithm," Journal of Electromagnetic Wave and Application, Vol. 16, No. 4, 551-572, 2002.
doi:10.1163/156939302X00444 Google Scholar
10. Li, Z. X. and Y. Q. Jin, "Bistatic scattering and transmitting through a fractal rough surface with high permittivity using the physics-based two-grid method in conjunction with the forwardbackward method and spectrum acceleration algorithm," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 9, 1323-1327, 2002.
doi:10.1109/TAP.2002.802166 Google Scholar
11. Iodice, A., "Forward-backward method for scattering from dielectric rough surface," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 7, 901-911, 2002.
doi:10.1109/TAP.2002.800700 Google Scholar
12. Iodice, A., "Scattering from natural soils modeled by dielectric fractal profile: the Forward-backward approach," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 77-85, 2004.
doi:10.1109/TGRS.2003.816664 Google Scholar
13. Pino, M. R., L. Landesa, J. L. Rodriguez, et al. "The generalized Forward-Backward method for analyzing the scattering from targets on ocean-like rough surfaces," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 6, 961-968, 1999.
doi:10.1109/8.777118 Google Scholar
14. Pino, M. R., R. J. Burkholder, F. Obelleiro, et al. "Fast generalized forward-backward method by using a spectral acceleration," Antennas and Propagation Society International Symposium, Vol. 2, 11-16, 1999.
15. Wang, X., C. F. Wang, and Y. B. Gan, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901 Google Scholar
16. Xu, X. B. and C. M. Butler, "Current induced by TE excitation on coupled and partially buried cylinder at the interface between two media," IEEE Trans. on Anten. and Propagat., Vol. 38, No. 11, 1823-1828, 1990.
doi:10.1109/8.102745 Google Scholar
17. Mallahzadeh, A. R. and M. Soleimani, "Scattering computation from the target with lossy background," Progress In Electromagnetic Research, Vol. 57, 151-163, 2006.
doi:10.2528/PIER05070503 Google Scholar
18. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Wave and Application, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813 Google Scholar
19. Chiu, T. and K. Sarabandi, "Electromagnetic scattering interaction between a dielectric cylinder and a slight rough surface," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 10, 902-913, 1999.
doi:10.1109/8.774155 Google Scholar
20. Liu, P. and Y. Q. Jin, "The finite element method with domian decomposition for electromagnetic bistatic scattering from the comprehensive model of a ship on and a target above a large scale rough sea surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 5, 950-956, 2004.
doi:10.1109/TGRS.2004.825583 Google Scholar
21. Jin, Y. Q. and Z. X. Li, "Numerical simulation of radar survellance for the ship targer and oceanic clutters in two-dimensional model," Radio Science, Vol. 38, No. 3, 11-1, 2003.
doi:10.1029/2002RS002692 Google Scholar
22. Jin, Y. Q. and Z. X. Li, "Simulation of scattering from complex rough surface at low grazing angle using the GFBM/SAA method," IEE J. Transactions of Fundamentals and Materials Society (A), Vol. 121, No. 10, 917-921, 2001. Google Scholar
23. Pino, M. R., R. J. Burkdolder, and F. Obelleiro, "Spectral acceleration of the generalized forward-backward method," IEEE Trans. on Anten. and Propagat., Vol. 50, No. 6, 785-797, 2002.
doi:10.1109/TAP.2002.1017658 Google Scholar
24. Adams, R. J. and G. S. Brown, "A combined field approach to scattering from infinite elliptical cylinders using the method of ordered multiple interactions," IEEE Trans. on Anten. and Propagat., Vol. 47, No. 2, 364-375, 1999.
doi:10.1109/8.761077 Google Scholar
25. Adams, R. J. and G. S. Brown, "A rapidly convergent iterative method for two-dimensional closed-body scattering problems," Microwave and Optical Technology Letters, Vol. 20, No. 3, 179-183, 1999.
doi:10.1002/(SICI)1098-2760(19990205)20:3<179::AID-MOP9>3.0.CO;2-5 Google Scholar
26. Li, Z. X., "Bistatic scattering from rough dielecreic soil surface with a conducting object partially buried by using the GFBM/SAA method," IEEE Trans. on Anten. and Propagat., Vol. 54, No. 7, 2072-2080, 2006.
doi:10.1109/TAP.2006.877187 Google Scholar
27. Kong, J. A., Electromagnetic Wave Theory, 2nd edition, 1990.
28. Harrington, R. F., Field Computation by Moment Method, IEEE Press, 1993.
29. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, 1983.
30. Franceschetti, G., A. Iodice, M. Migliaccio, and D. Riccio, "Fractals and small perturbation scattering model," Radio Science, Vol. 34, No. 5, 1043-1054, 1999.
doi:10.1029/1999RS900053 Google Scholar
31. Jaggard, D. L. and X. Sun, "Scattering from fractally corrugated surfaces," Journal of the Optical Society of American, Vol. 7, No. 6, 1055-1062, 1990. Google Scholar
32. Manninen, A. T., "Multiscale surface roughness and backscattering," Progress In Electromagnetic Research, Vol. 16, 175-203, 1997.
doi:10.2528/PIER96060700 Google Scholar
33. Davidson, M. W. J., T. L. Toan, F. Mattia, et al. "On the characterization of agricultural soil roughness for radar remote sensing studies," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, 630-640, 2000.
doi:10.1109/36.841993 Google Scholar
34. Chan, C. H., L. Tsang, and Q. Li, "Monte Carlo simulation of large-scale one-dimenrional random surface scattering at neargrazing incidence: Penetrable case," IEEE Trans. on Anten. and Propagat., Vol. 46, No. 3, 142-149, 1998.
doi:10.1109/8.655461 Google Scholar
35. Sancchez-Gil, J. A. and M. Nieto-Vesperinas, "Light scattering from random rough dielectric surface," Journal of the Optical Society of America A, Vol. 8, No. 8, 1270-1286, 1991. Google Scholar