Vol. 77
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-09-09
Simplified Formulation of Dyadic Green's Functions and Their Duality Relations for General Anisotropic Media
By
, Vol. 77, 391-408, 2007
Abstract
A simplified method to obtain the complete set of the dyadic Green's functions (DGFs) for general anisotropic media is presented. The method is based on the k-domain representation of the fields in terms of wave matrices. The Fourier transformed Green's functions are calculated through the inverses of wave matrices. The inverses of the wave matrices, which lead to the final form of DGF, are obtained using dyadic decomposition technique. This facilitates the inverse operation significantly and gives DGFs clear vector representation, which helps their physical interpretation. The dyadic decomposition of the wave matrices has been presented for uniaxially anisotropic, biaxially anisotropic and gyrotropic media. The method of deriving DGF using the technique given in this paper is applied on a uniaxially anisotropic medium and verified with the existing results. It is shown that the knowledge of the inverse of one type of wave matrix is adequate to find the complete set of the dyadic Green's functions for a general anisotropic medium using the method presented. The duality relations of dyadic Green's functions are also developed. It is shown that once the dyadic Green's functions for one of the dual media are obtained, the DGFs for the other dual medium can be found by application of the duality relations shown in this paper.
Citation
Abdullah Eroglu Jay Kyoon Lee , "Simplified Formulation of Dyadic Green's Functions and Their Duality Relations for General Anisotropic Media," , Vol. 77, 391-408, 2007.
doi:10.2528/PIER07082401
http://www.jpier.org/PIER/pier.php?paper=07082401
References

1. Gao, G., C. T. Verdin, and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green's functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.
doi:10.2528/PIER04070201

2. Soliman, E. A. and G. A. E. Vandenbosh, "Green's functions of filament sources embedded in stratified dielectric media," Progress In Electromagnetics Research, Vol. 62, 21-40, 2006.
doi:10.2528/PIER06022401

3. Tai, C. T., Dyadic Green's Functions in Electromagnetic Theory, IEEE Press, 1994.

4. Jarem, J. M., "A rapidly-convergent, mixed-partial derivative boundary condition Green's function for an anisotropic half-space: perfect conductor case," Progress In Electromagnetics Research, Vol. 67, 39-112, 2007.
doi:10.2528/PIER06072804

5. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

6. Yang, R., Y. Xie, P. Wang, and L. Li, "Microstrip antennas with left-handed materials subsrates," J. of Electromagn. Waves and Appl., Vol. 20, No. 9, 1221-1233, 2006.
doi:10.1163/156939306777442908

7. Mudaliar, S. and J. K. Lee, "Dyadic Green's functions for a twolayer biaxially anisotropic medium," J. of Electromagn. Waves and Appl., Vol. 10, No. 7, 909-923, 1996.

8. Barkeshli, S., "Electromagnetic dyadic Green's function for multilayered symmetric gyroelectric media," Radio Science, Vol. 28, No. 1, 23-36, 1993.
doi:10.1029/92RS01926

9. Mudaliar, S., "On the application of the radiative transfer approach to scattering from a random medium layer with a rough boundaries," J. of Electromagn. Waves and Appl., Vol. 20, No. 12, 1739-1749, 2006.
doi:10.1163/156939306779292246

10. Krowne, C. M., "Green's function in spectral domain for biaxial and uniaxial anisotropic planar dielectric structures," IEEE Trans. Antennas Propag., Vol. 32, 1273-1281, 1984.
doi:10.1109/TAP.1984.1143250

11. Li, L.-W., J.-H. Koh, T. S. Yeo, M. S. Leong, and P. S. Kooi, "Cylindrical vector eigenfunction expansion of Green dyadics for multilayered anisotropic media and its application to four layered forest," IEEE Trans., Vol. 52, 466-477, 2004.

12. Tsalamengas, J. L. and N. K. Uzunoglu, "Radiation from a dipole near a general anisotropic layer," IEEE Trans. Antennas Propag., Vol. 38, 9-16, 1990.
doi:10.1109/8.43584

13. Morgan, M. A., D. L. Fisher, and E. A. Milne, "Electromagnetic scattering by stratified inhomogeneous anisotropic media," IEEE Trans. Antennas Propag., Vol. 35, No. 2, 191-197, 1987.
doi:10.1109/TAP.1987.1144069

14. Eroglu, A., "Electromagnetic wave propagation and radiation in gyrotropic medium," Ph.D Dissertation, 2004.

15. Eroglu, A. and J. K. Lee, "Dyadic Green's functions for an electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 58, 223-241, 2006.
doi:10.2528/PIER05070203

16. Lee, J. K. and J. A. Kong, "Dyadic Green's functions for layered anisotropic medium," Electromagnetics, Vol. 3, 111-130, 1983.
doi:10.1080/02726348308915180