Vol. 79
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-07
A Nondestructive Technique for Determining Complex Permittivity and Permeability of Magnetic Sheet Materials Using Two Flanged Rectangular Waveguides
By
Progress In Electromagnetics Research, Vol. 79, 367-386, 2008
Abstract
In this paper,a nondestructive technique for determining the complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides is presented. The technique extends existing single probe methods by its ability to simultaneously measure reflection and transmission coefficients imperative for extracting both permittivity and permeability over all frequencies. Using Love's Equivalence Principle,a system of coupled magnetic field integral equations (MFIEs) is formed. Evaluation of one of the two resulting spectral domain integrals via complex plane integration is discussed. The system,solv ed via the Method of Moments (MoM),yields theoretical values for the reflection and transmission coefficients. These values are compared to measured values and the error minimized using nonlinear least squares to find the complex permittivity and permeability of a material. Measurement results for two magnetic materials are presented and compared to traditional methods for the purpose of validating the new technique. The technique's sensitivity to uncertainties in material thickness and waveguide alignment is also examined.
Citation
Milo Hyde IV Michael John Havrilla , "A Nondestructive Technique for Determining Complex Permittivity and Permeability of Magnetic Sheet Materials Using Two Flanged Rectangular Waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405
http://www.jpier.org/PIER/pier.php?paper=07102405
References

1. Li, C. and K. Chen, "Determination of electromagnetic properties of materials using flanged open-ended coaxial probe — Full wave analysis," IEEE Trans. Instrum. Meas., Vol. 44, No. 1, 19-27, 1995.
doi:10.1109/19.368108

2. Chang, C., K. Chen, and J. Qian, "Nondestructiv e determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, No. 5, 1084-1092, 1997.
doi:10.1109/19.676717

3. Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K. Varadan, Microwave Electronics Measurement and Materials Characterization, John Wiley & Sons, New York, 2004.

4. Stewart, J. W. and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2037-2052, 2006.
doi:10.1163/156939306779322693

5. Olmi, R., R. Nesti, G. Pelosi, and C. Riminesi, "Impro vement of the permittivity measurement by a 3D full-wave analysis of a finite flanged coaxial probe," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 2, 217-232, 2004.
doi:10.1163/156939304323062103

6. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimo de solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: the forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, No. 6, 1131-1140, 1999.
doi:10.1109/19.816127

7. Mautz, J. R. and R. F. Harrington, "T ransmission from a rectangular waveguide into half-space through a rectangular aperture," IEEE Trans. Microwave TheoryT ech., Vol. MTT-26, No. 1, 44-45, 1978.
doi:10.1109/TMTT.1978.1129307

8. Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, "The reflection from an open-ended rectangular waveguide terminated by a layered dielectric medium," IEEE Trans. Microwave Theory Tech., Vol. MTT-33, No. 5, 359-366, 1985.
doi:10.1109/TMTT.1985.1133006

9. Encinar, J. A. and J. M. Rebollar, "Con vergence of numerical solutions of open-ended waveguide by modal analysis and hybrid modal-spectral techniques," IEEE Trans. Microwave Theory Tech., Vol. MTT-34, No. 7, 809-814, 1986.
doi:10.1109/TMTT.1986.1133445

10. Popovic, D., et al., "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Trans. Microwave TheoryT ech., Vol. 53, No. 5, 1713-1722, 2005.
doi:10.1109/TMTT.2005.847111

11. Bao, J., S. Lu, and W. D. Hurt, "Complex dielectric measurements and analysis of brain tissues in the radio and microwave frequencies," IEEE Trans. Microwave TheoryT ech., Vol. 45, No. 10, 1730-1741, 1997.
doi:10.1109/22.641720

12. Mazlumi, F., S. Sadeghi, and R. Moini, "In teraction of rectangular open-ended waveguides with surface tilted long cracks in metals," IEEE Trans. Instrum. Meas., Vol. 55, No. 6, 2191-2197, 2006.
doi:10.1109/TIM.2006.884282

13. Huber, C., H. Abiri, S. I. Ganchev, and R. Zoughi, "Mo deling of surface hairline-crack detection in metals under coatings using an open-ended rectangular waveguide," IEEE Trans. Microwave TheoryT ech., Vol. 45, No. 11, 2049-2057, 1997.
doi:10.1109/22.644234

14. Yeh, C. and R. Zoughi, "A novel microwave method for detection of long surface cracks in metals," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 719-725, 1994.
doi:10.1109/19.328896

15. Baker-Jarvis, J., M. D. Janezic, P . D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Instrum. Meas., Vol. 43, No. 5, 711-718, 1994.
doi:10.1109/19.328897

16. Wang, S., M. Niu, and D. Xu, "A frequency-varying method for simultaneous measurement of complex permittivity and permeability with an open-ended coaxial probe," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 2145-2147, 1998.
doi:10.1109/22.739296

17. Maode, N., S. Yong, Y. Jinkui, F. Chenpeng, and X. Deming, "An improved open-ended waveguide measurement technique on parameters εr and μr of high-loss materials," IEEE Trans. Instrum. Meas., Vol. 47, No. 2, 476-481, 1999.
doi:10.1109/19.744194

18. Chen, C., Z. Ma, T. Anada, and J. Hsu, Further study on twothickness- method for simultaneous measurement of complex EM parametersbas ed on open-ended coaxial probe, 2005 European Microwave Conference, 4-6, 2005.

19. Tantot, O., M. Chatard-Moulin, and P. Guillon, "Measurement of complex permittivity and permeability and thickness of multilayered medium by an open-ended waveguide method," IEEE Trans. Instrum. Meas., Vol. 46, No. 2, 519-522, 1997.
doi:10.1109/19.571900

20. Hyde, M. W. and M. J. Havrilla, Measurement of complex permittivity and permeability using two flanged rectangular waveguides, 2007 International Microwave Symposium, 3-8, 2007.

21. Collin, R. E., FieldThe ory of GuidedWaves, 2nd edition, IEEE Press, New York, 1991.

22. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, New York, 1998.

23. Weir, W. B., Automatic measurement of complex dielectric constant and permeability at microwave frequencies, Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.

24. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic propertiesof materialsb y time-domain techniques," IEEE Trans. Instrum. Meas., Vol. IM-19, No. 4, 377-382, 1970.

25. Hanson, G. W. and A. B. Yakovlev, Operator Theory for Electromagnetics: An Introduction, Springer-Verlag, New York, 2001.

26. Hanson, G. W., A. I. Nosich, and E. M. Kartchevski, "Green's function expansions in dyadic root functions for shielded layered waveguides," Progress In Electromagnetics Research, Vol. 39, 61-91, 2003.
doi:10.2528/PIER02082205

27. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, 5th ed., Harcourt/Academic Press, New York, 2001.

28. Agilent 8510C Network Analyzer Data Sheet, Agilent Technologies, Agilent Technologies, 2000., 2000.