1. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, 414-439, 1990.
doi:10.1016/0021-9991(90)90107-C Google Scholar
2. Wei, S., Z. Huang, X. Wu, and M. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," J. Comput. Phys., Vol. 225, 33-50, 2007.
doi:10.1016/j.jcp.2006.11.027 Google Scholar
3. Jian, L. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation of 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377 Google Scholar
4. Liu, J. and J. M. Jin, "A novel hybridization of higher order finite element and boundary integral methods for electromagnetic scattering and radiation problems," IEEE Trans. Antennas Propagat., Vol. 49, 1794-1806, 2001.
doi:10.1109/8.982462 Google Scholar
5. Qiu, Z. J., J. D. Xu, G. Wei, and X. Y. Hou, "An improved time domain finite element-boundary integral scheme for electromagnetic scattering from 3-D objects," Progress In Electromagnetics Research, Vol. 75, 119-135, 2007.
doi:10.2528/PIER07053106 Google Scholar
6. Kashdan, E. and E. Turkel, "High-order accurate modeling of electromagnetic wave propagation across media — Grid conforming bodies," J. Comput. Phys., Vol. 218, 816-835, 2006.
doi:10.1016/j.jcp.2006.03.009 Google Scholar
7. Jin, J. M., The Finite Element Methodin Electromagnetic, 2nd edition, 2002.
8. Qiu, Z. J., X. Y. Hou, X. Li, and J. D. Xu, "On the condition number of matrices from various hybrid vector FEMBEM formulations for 3-D scattering," J. Electromagn. Waves Appl., Vol. 20, 1797-1806, 2006.
doi:10.1163/156939306779292138 Google Scholar
9. Botha, M. M. and J. M. Jin, "Adaptive finite element-boundary integral analysis for electromagnetic fields in 3-D," IEEE Trans. Antennas Propagat., Vol. 53, 1710-1720, 2005.
doi:10.1109/TAP.2005.846802 Google Scholar
10. Paulsen, K. D., D. R. Lynch, and J. W. Strobehn, "Three dimensional finite, boundary, and hybrid element solutions of Maxwell equations for lossy dielectric media," IEEE Trans. Microwave Theory Tech., Vol. 36, 682-693, 1988.
doi:10.1109/22.3572 Google Scholar
11. Gong, Z. and G. Q. Zhu, "FDTD analysis of an anisotropically coated missile," Progress In Electromagnetics Research, Vol. 64, 69-80, 2006.
doi:10.2528/PIER06071301 Google Scholar
12. Remis, R. F., "On the stability of the finite-difference time-domain method," J. of Computational Physics, Vol. 163, 249-261, 2000.
doi:10.1006/jcph.2000.6573 Google Scholar
13. Jiao, D., A. A. Ergin, B. Shanker, E. Michielssen, and J. M. Jin, "A fast higher-order time-domain finite element-boundary integral method for 3-D electromagnetic scattering analysis," IEEE Trans. Antennas Propagat., Vol. 50, 1192-1202, 2002.
doi:10.1109/TAP.2002.801375 Google Scholar
14. Cowen Mc, A., A. J. Radcliffe, and M. S. Towers, "Time-domain modeling of scattering from arbitrary cylinders in two dimensions using a hybrid finite-element and integral equation method," IEEE Trans. Magn., Vol. 39, 1227-1229, 2003.
doi:10.1109/TMAG.2003.810501 Google Scholar
15. Wang, Y., K. C. Sujeet, and S. N. Safieddin, "FDTD/raytracing analysis method for wave penetration through inhomogeneous walls," IEEE Trans. on Antennas andPr opagat., Vol. 50, 1598-1604, 2002.
doi:10.1109/TAP.2002.802157 Google Scholar
16. Nie, X. C., Y. B. Gan, N. Yuan, C. F. Wang, and L. W. Li, "An efficient hybrid method for analysis of slot arrays enclosed by a large radome," J. of Electromagn. Wave andAppl., Vol. 20, 249-264, 2006.
doi:10.1163/156939306775777215 Google Scholar
17. Sun, E. Y. and W. V. T. Rusch, "Time-domain physical-optics," IEEE Trans. on Antennas andPr opagat., Vol. 42, 9-15, 1994.
doi:10.1109/8.272295 Google Scholar
18. Beillard, B., L. Andrieu, Y. Chevalier, and B. Jecko, "Technique combining the finite difference time domain and the uniform theory of diffraction," Microwave andOptic al Technology Letters, Vol. 16, 10-16, 1997. Google Scholar
19. Yang, L. X., D. B. Ge, and B. Wei, "FDTD/TDPO hybrid approachfor analysis of the EM scattering of combinative objects," Progress In Electromagnetics Research, Vol. 76, 275-284, 2007.
doi:10.2528/PIER07071206 Google Scholar
20. Sadiku and Matthew, Numerical Techniques in Electromagnetic, Numerical Techniques in Electromagnetic, 2nd edition, 2001.
21. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagn., Vol. 10, 407-421, 1990.
doi:10.1080/02726349008908254 Google Scholar
22. Bossavit, A., "Whitney forms: A class of finite elements for three-dimensional computation in electromagnetism," IEE Proc., Vol. 135, 493-500, 1988.
23. Christie, I., D. F. Griffiths, A. R. Mitchell, and O. C. Zienkiewicz, "Finite element methods for second order differential equations withsignifican t first derivatives," International Journal for Numerical Methods in Engineering, Vol. 10, 1389-1396, 1976.
doi:10.1002/nme.1620100617 Google Scholar
24. Costanzo, S. and G. Di Massa, "Near-field to far-field transformation withplanar spiral scanning," Progress In Electromagnetics Research, Vol. 73, 49-59, 2007.
doi:10.2528/PIER07031903 Google Scholar
25. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, "Full wave analysis of RF signal attenuation in a roughsurface cave using a higher order time domain vector finite element method," J. Electromagn. Waves Appl., Vol. 20, 1695-1705, 2006.
doi:10.1163/156939306779292408 Google Scholar
26. Zhang, Y. J. and E. P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," J. Electromagn. Waves Appl., Vol. 19, 1535-1546, 2005.
doi:10.1163/156939305775701813 Google Scholar
27. Chen, K.-S., A. K. Fung, J. C. Shi, and H.-W. Lee, "Interpretation of backscattering mechanisms from non-Gaussian correlated randomly roughsurfaces," J. Electromagn. Waves Appl., Vol. 20, No. 1, 105-118, 2006.
doi:10.1163/156939306775777404 Google Scholar
28. Fung, A. K. and N. C. Kuo, "Backscattering from multi-scale and exponentially correlated surfaces," J. Electromagn. Waves Appl., Vol. 20, No. 1, 3-11, 2006.
doi:10.1163/156939306775777378 Google Scholar