Vol. 82
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-02-19
Transition Region Effects in Tunable Fiber-Based Wavelength-Selective Devices
By
Progress In Electromagnetics Research, Vol. 82, 33-50, 2008
Abstract
Tunability of fiber Bragg grating (FBG) in transition region is used to implement wavelength-selective optical intensity modulator, which superimposes a secondary low-speed data on the transit high-speed payload optical signal. Theoretical model of the device is developed and verified by measurements in the linear and nonlinear slopes of the FBG. Experiments with strong and relatively weak gratings confirm the wavelength-selectivity and stability of modulation. The fiber-based modulator is employed for optically tagging or labeling individual wavelength channels using baseband and amplitude-shift keying (ASK) modulated signals. The wavelengthselective channel labeling scheme is useful for the control and management of the optical circuits and services in WDM networks.
Citation
Mohammad Rajabvand Fereidoon Behnia Taghi Fatehi , "Transition Region Effects in Tunable Fiber-Based Wavelength-Selective Devices," Progress In Electromagnetics Research, Vol. 82, 33-50, 2008.
doi:10.2528/PIER08020302
http://www.jpier.org/PIER/pier.php?paper=08020302
References

1. Lee, Y. J., J. Bae, K. Lee, J.-M. Jeong, and S. B. Lee, "Tunable dispersion and dispersion slope compensator using strain-chirped fiber Bragg grating," IEEE Photon. Technol. Lett., Vol. 19, No. 10, 762-764, 2007.
doi:10.1109/LPT.2007.894973

2. Kwon, J., S. Kim, S. Roh, and B. Lee, "Tunable dispersion slope compensator using a chirped fiber Bragg grating tuned by a fanshaped thin metallic heat channel," IEEE Photon. Technol. Lett., Vol. 18, No. 1, 118-120, 2006.
doi:10.1109/LPT.2005.860058

3. Xia, L., P. Shum, M. Yan, Y. Wang, and T. H. Cheng, "Tunable and switchable fiber ring laser among four wavelengths with ultranarrow wavelength spacing using a quadruple-transmissionband fiber Bragg grating filter," IEEE Photon. Technol. Lett., Vol. 18, No. 19, 2038-2040, 2006.
doi:10.1109/LPT.2006.883326

4. Spiegelberg, C., J. Geng, Y. Hu, Y. Kaneda, S. Jiang, and N. Peyghambarian, "Low-noise narrow-line width fiber laser at 1550 nm," J. Lightwave Technol., Vol. 22, No. 1, 57-62, 2004.
doi:10.1109/JLT.2003.822208

5. Fatehi, M. T., S. Jin, W. H. Knox, and H. Mavoori, Controllable wavelength-selective optical cross-connect, U.S. Pat. No. 6, 597, 481, 2003.

6. Kim, J., J. Jung, S. Kim, and B. Lee, "Reconfigurable optical cross-connect using WDM MUX/DEMUX pair and tunable fiber Bragg gratings," Electron. Lett., Vol. 36, No. 1, 67-68, 2000.
doi:10.1049/el:20000044

7. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101

8. Yang, T., S. Song, H. Dong, and R. Ba, "Waveguide structures for generation of terahertz radiation by electro-optical process in GaAs and ZnGeP2 using 1.55 μm fiber laser pulses," Progress In Electromagnetics Research Letters, Vol. 2, 95-102, 2008.

9. Ibrahim, A.-B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.
doi:10.2528/PIER07031406

10. Rostami, A. and A. Yazdanpanah-Goharrizi, "A new method for classification and identification of complex fiber Bragg grating using the genetic algorithm," Progress In Electromagnetics Research, Vol. 75, 329-356, 2007.
doi:10.2528/PIER07061802

11. Lim, M. H., S. C. Yeow, P. K. Choudhury, and D. Kumar, "Towards the dispersion characteristics of tapered core dielectric optical fibers," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1597-1609, 2006.
doi:10.1163/156939306779292417

12. Gangwar, R., S. P. Singh, and N. Singh, "L-band superfluorescent fiber source," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2201-2204, 2007.
doi:10.1163/156939307783134362

13. Gagliardi, R. M. and S. Karp, Optical Communications, 2nd Ed., Ch. 8, Wiley, 1995.

14. Moon, N. S. and K. Kikuchi, "N*N multiwavelength optical crossconnect based on tunable fiber Bragg gratings," J. Lightwave Technol., Vol. 21, No. 3, 703-718, 2003.
doi:10.1109/JLT.2003.808632

15. Tripathi, R., R. Gangwar, and N. Singh, "Reduction of crosstalk in wavelength division multiplexed fiber optic communication systems," Progress In Electromagnetics Research, Vol. 77, 367-378, 2007.
doi:10.2528/PIER07081002

16. Chen, L. R., S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, "Ultrashort pulse reflection from fiber gratings: A numerical investigation," J. Lightwave Technol., Vol. 15, No. 8, 1503-1512, 1997.
doi:10.1109/50.618383

17. Taverner, D., D. J. Richardson, J. L. Archambault, L. Reekie, P. St. J. Russell, and D. A. Payne, "Experimental investigation of picosecond pulse reflection from fiber gratings," Opt. Lett., Vol. 20, No. 3, 282-284, 1995.

18. Mishra, M. and S. Konar, "High bit rate dense dispersion managed optical communication system with distributed amplification," Progress In Electromagnetics Research, Vol. 78, 301-320, 2008.
doi:10.2528/PIER07091305

19. Biswas, A., "Stochastic perturbation of parabolic law optical solutions," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1479-1488, 2007.

20. Wu, J.-W. and H.-B. Bao, "Amplification, compression and shaping of picosecond super-Gaussian optical pulse using MZISOAs configuration," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2215-2228, 2007.
doi:10.1163/156939307783134308

21. Liaw, S. K., K. P. Ho, and S. Chi, "Dynamic power-equalized EDFA module based on strain tunable fiber Bragg gratings," IEEE Photon. Technol. Lett., Vol. 11, No. 7, 797-799, 1990.
doi:10.1109/68.769711

22. Zeng, F. and J. Yao, "Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator," IEEE Photon. Technol. Lett., Vol. 18, No. 19, 2062-2064, 2006.
doi:10.1109/LPT.2006.883310

23. Chang, G. K., J. Yu, A. Chowdhury, and Y. K. Yeo, "Optical carrier suppression and separation label-switching techniques," J. Lightwave Technol., Vol. 23, No. 10, 3372-3387, 2005.
doi:10.1109/JLT.2005.856297

24. Zhu, Z., Z. Pan, and S. J. B. Yoo, "A compact all-optical subcarrier label-swapping system using an integrated EML for 10-Gb/s optical label-switching networks," IEEE Photon. Technol. Lett., Vol. 17, No. 2, 426-428, 2005.
doi:10.1109/LPT.2004.839780

25. Popov, M., A. Martinez, J. Capmany, D. Pastor, P. Y. Fonjallaz, and B. Ortega, "Fiber-Bragg-grating-based device for payload and label separation in highly packed subcarrier-multiplexed optical label swapping," IEEE Photon. Technol. Lett., Vol. 17, No. 11, 2445-2447, 2005.
doi:10.1109/LPT.2005.857599

26. Yang, J., M., Y. Jeon, J. Cao, Z. Pan, S. J. B. Yoo, and , "Performance monitoring in transparent optical networks using self-monitoring optical-labels," Electron. Lett., Vol. 40, No. 21, 1370-1372, 2004.
doi:10.1049/el:20045769

27. Lee, H. J., S. J. B Yoo, V. K. Tsui, and S. K. H. Fong, "A simple all-optical label detection and swapping technique incorporating a fiber Bragg grating filter," IEEE Photon. Technol. Lett., Vol. 13, No. 6, 635-637, 2001.
doi:10.1109/68.924052

28. Hauer, M. C., J. E. McGeehan, S. Kumar, J. D. Touch, J. Bannister, E. R. Lyons, C. H. Lin, A. A. Au, H. P. Lee, D. S. Starodubov, and A. E. Wi, "Optically assisted internet routing using arrays of novel dynamically reconfigurable FBG-FBGbased," J. Lightwave Technol., Vol. 21, No. 11, 2765-2778, 2003.
doi:10.1109/JLT.2003.819144

29. Tian, C., Z. Zhang, M. Ibsen, M. R. Mokhtar, P. Petropoulos, and D. J. Richardson, Reconfigurable all-optical packet switching based on fiber Bragg gratings, OFC 2006 Anaheim, 2006.

30. Tarhuni, N., M. Elmusrati, and T. Korhonen, "Multi-class optical-CDMA network using optical power control," Progress In Electromagnetics Research, Vol. 64, 279-292, 2006.
doi:10.2528/PIER06070701

31. Ghafoori-Fard, H., M. J. Moghimi, and A. Rostami, "Linear and nonlinear super imposed Bragg grating: A novel proposal for all-optical multi-wavelength filtering and switching," Progress In Electromagnetics Research, Vol. 77, 243-266, 2007.
doi:10.2528/PIER07072903

32. Kogelnik, H., "Theory of optical waveguides," Guided-Wave Optoelectronics, T. Tamir (ed.), Springer-Verlag, New York, 1990.

33. Erdogan, T., "Fiber grating spectra," J. Lightwave Technol., Vol. 15, 1277-1294, 1997.
doi:10.1109/50.618322

34. Iocco, A., H. G. Limberger, R. P. Salathe, L. A. Everall, K. E. Chisholm, J. A. R. Williams, and I. Bennion, "Bragg grating fast tunable filter for wavelength division multiplexing," J. Lightwave Technol., Vol. 17, No. 7, 1217-1221, 1999.
doi:10.1109/50.774258

35. Mohammad, N., W. Szyszkowski, W. J. Zhang, E. I. Haddad, J. Zou, W. Jamroz, and R. Kruzelecky, "Analysis and development of a tunable fiber Bragg grating filter based on axial tension/compression," J. Lightwave Technol., Vol. 22, No. 8, 2001-2013, 2004.
doi:10.1109/JLT.2004.832439

36. Inui, T., T. Komukai, and M. Nakazawa, "Highly efficient tunable fiber Bragg grating filters using multilayer piezoelectric transducers," Optics Communications, Vol. 190, 1-4, 2001.
doi:10.1016/S0030-4018(01)00987-7

37. Feng, K. M., V. Grubsky, D. S. Starodubov, J. X. Cai, A. E. Willner, and J. Feinberg, "Tunable nonlinearly-chirped fiber Bragg grating for use as a dispersion compensator with a voltage-controlled dispersion," OFC ’98 Technical Digest, 72-74, 1998.