Vol. 82
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-03-20
Analysis of the Optical Transmission through the Metal Plate with Slit Array
By
Progress In Electromagnetics Research, Vol. 82, 109-125, 2008
Abstract
The near and far field properties of the large-scale metal plate with slit array are studied by applying the finite-difference timedomain (FDTD) method. The far region scattering properties at different incident angles are also discussed. We find out the enhanced optical transmission (EOT) through the metal plate with suitable placed narrow slit array is excited by the interaction of the surface plasmon polarization (SPP) and the Fabry-Perot resonance (FPR), and the dielectric substrate has significant influence on the transmission properties by affecting the electromagnetic field distribution on the metal-dielectric interface. Furthermore, the scattering field would be reduced and the transmission efficiency could be improved by the phase shift caused by the dielectric substrate. These unusual properties suggest possible applications to light-transparent metal contacts, stealth materials, etc.
Citation
Yong Fu Kang Li Fanmin Kong , "Analysis of the Optical Transmission through the Metal Plate with Slit Array," Progress In Electromagnetics Research, Vol. 82, 109-125, 2008.
doi:10.2528/PIER08022013
http://www.jpier.org/PIER/pier.php?paper=08022013
References

1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570

2. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, No. 7123, 46, 2007.
doi:10.1038/nature05350

3. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of sub-wavelength hole arrays," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
doi:10.1364/OE.14.005445

4. Mary, A., S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Physical Review B, Vol. 76, No. 19, 195414, 2007.
doi:10.1103/PhysRevB.76.195414

5. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402

6. Lalanne, P. and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys., Vol. 2, No. 8, 551-556, 2006.
doi:10.1038/nphys364

7. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Spring-Verlag, Berlin, 1988.

8. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849

9. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301

10. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1721-1728, 2005.
doi:10.1163/156939305775696801

11. Kong, F. M., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP nano scale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203

12. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865

13. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in Gan/Algan superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102

14. Yee, K., "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

15. Kong, J. A., Electromagnetic Wave Theory, Wiley & Sons, New York, 1986.

16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-4, 2007.
doi:10.2528/PIER06083104

17. Oubre, C. and P. Nordlander, "Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B, Vol. 108, No. 46, 17740-17747, 2004.
doi:10.1021/jp0473164

18. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 67, 341-359, 2007.
doi:10.2528/PIER06122801

19. Zhao, Y., P. Belov, and Y. Hao, "Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method," Phys. Rev. E, Vol. 75, No. 3, 37602-37605, 2007.
doi:10.1103/PhysRevE.75.037602

20. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
doi:10.1163/156939307783152777

21. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

22. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Boston, 2000.

24. Ramahi, O. M., "Near-and far-field calculations in FDTD simulations using Kirchhoff surface integral representation," IEEE Trans. Antennas Propagat., Vol. 45, No. 5, 753-759, 1997.
doi:10.1109/8.575616

25. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
doi:10.1163/156939307783152777

26. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902

27. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401

28. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, 1996.
doi:10.1006/jcph.1996.0181

29. Weber, M. J., Handbook of Optical Materials, CRC Press, New York, 2003.

30. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation fortransient propagation in plasma," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431