1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
doi:10.1038/35570 Google Scholar
2. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, No. 7123, 46, 2007.
doi:10.1038/nature05350 Google Scholar
3. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of sub-wavelength hole arrays," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
doi:10.1364/OE.14.005445 Google Scholar
4. Mary, A., S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Physical Review B, Vol. 76, No. 19, 195414, 2007.
doi:10.1103/PhysRevB.76.195414 Google Scholar
5. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402 Google Scholar
6. Lalanne, P. and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys., Vol. 2, No. 8, 551-556, 2006.
doi:10.1038/nphys364 Google Scholar
7. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Spring-Verlag, 1988.
8. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849 Google Scholar
9. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301 Google Scholar
10. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1721-1728, 2005.
doi:10.1163/156939305775696801 Google Scholar
11. Kong, F. M., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP nano scale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203 Google Scholar
12. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865 Google Scholar
13. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in Gan/Algan superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102 Google Scholar
14. Yee, K., "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
15. Kong, J. A., Electromagnetic Wave Theory, Wiley & Sons, 1986.
16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-4, 2007.
doi:10.2528/PIER06083104 Google Scholar
17. Oubre, C. and P. Nordlander, "Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B, Vol. 108, No. 46, 17740-17747, 2004.
doi:10.1021/jp0473164 Google Scholar
18. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 67, 341-359, 2007.
doi:10.2528/PIER06122801 Google Scholar
19. Zhao, Y., P. Belov, and Y. Hao, "Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method," Phys. Rev. E, Vol. 75, No. 3, 37602-37605, 2007.
doi:10.1103/PhysRevE.75.037602 Google Scholar
20. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
doi:10.1163/156939307783152777 Google Scholar
21. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902 Google Scholar
22. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401 Google Scholar
23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, 2000.
24. Ramahi, O. M., "Near-and far-field calculations in FDTD simulations using Kirchhoff surface integral representation," IEEE Trans. Antennas Propagat., Vol. 45, No. 5, 753-759, 1997.
doi:10.1109/8.575616 Google Scholar
25. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
doi:10.1163/156939307783152777 Google Scholar
26. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902 Google Scholar
27. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401 Google Scholar
28. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, 1996.
doi:10.1006/jcph.1996.0181 Google Scholar
29. Weber, M. J., Handbook of Optical Materials, CRC Press, 2003.
30. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation fortransient propagation in plasma," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431 Google Scholar