1. Abouda, A. A. and S. G. Haggman, "Effect of mutual coupling on capacity of mimo wireless channels in high snr scenario," Progress In Electromagnetics Research, Vol. 65, 27-40, 2006.
doi:10.2528/PIER06072803 Google Scholar
2. Abouda, A. A., H. M. El-Sallabi, and S. G. Haggman, "Effect of antenna array geometry and ula azimuthal orientation on mimo channel properties in urban city street grid," Progress In Electromagnetics Research, Vol. 64, 257-278, 2006.
doi:10.2528/PIER06050801 Google Scholar
3. Noori, N. and H. Oraizi, "Evaluation of mimo channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008. Google Scholar
4. Hu, C.-F., J.-D. Xu, N. Li, and L. Zhang, "Indoor accurate RCS measurement technique on UHF band," Progress In Electromagnetics Research, Vol. 81, 279-289, 2008.
doi:10.2528/PIER08011402 Google Scholar
5. Xiao, S., J. Chen, B.-Z. Wang, and X.-F. Liu, "A numerical study on time-reversal electromagnetic wave for indoor ultra-wideband signal transmission," Progress In Electromagnetics Research, Vol. 77, 329-342, 2007.
doi:10.2528/PIER07082501 Google Scholar
6. Martinez, D., F. Las-Heras, and R. G. Ayestaran, "Fast methods for evaluating the electric field level in 2D-indoor environments," Progress In Electromagnetics Research, Vol. 69, 247-255, 2007.
doi:10.2528/PIER06122105 Google Scholar
7. Yarkoni, N. and N. Blaunstein, "Prediction of propagation characteristics in indoor radio communication environments," Progress In Electromagnetics Research, Vol. 59, 151-174, 2006.
doi:10.2528/PIER05090801 Google Scholar
8. Talbi, L. and G. Y. Delisle, "Finite difference time domain characterization of indoor radio propagation," Progress In Electromagnetics Research, Vol. 12, 251-275, 1996. Google Scholar
9. Xu, H., D. Chizhik, H. Huang, and R. Valenzuela, "A generalized space-time multiple-input multiple-output (MIMO) channel model," IEEE Trans. Wireless Commun., Vol. 3, 966-975, May 2004.
doi:10.1109/TWC.2004.827736 Google Scholar
10. Weichselberger, W., M. Herdin, H. Ozcelik, and E. Bonek, "A stochastic MIMO channel model with joint correlation of both link ends," IEEE Trans. Wireless Commun., Vol. 5, 90-100, Jan. 2006.
doi:10.1109/TWC.2006.1576533 Google Scholar
11. IEEE 802.11-03/940r4: TGn Channel Models, IEEE, [Online], Available: IEEE, , ftp://ieee:wireless@ftp.802wirelessworld.com/11/03/11-03-0940-02-000n-tgn-channel-models.doc.
12. Medbo, J. and P. Schramm, "Channel models for hiperlan/2 in different indoor scenarios," BRAN 3ERJ085B, March 1998. Google Scholar
13. Steinbauer, M., et al. "The double-directional radio channel," IEEE Antennas Propagat. Mag., Vol. 43, 51-63, Aug. 2001.
doi:10.1109/74.951559 Google Scholar
14. Saleh, A. and R. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Select. Areas Commun., Vol. 5, 128-137, Feb. 1987.
doi:10.1109/JSAC.1987.1146527 Google Scholar
15. Spencer, Q. H., et al. "Modeling the statistical time and angle of arrival characteristics of an indoor multipath channel," IEEE J. Select. Areas Commun., Vol. 18, 347-359, Mar. 2000.
doi:10.1109/49.840194 Google Scholar
16. Chong, C. C., et al. "A new statistical wideband spatio-temporal channel model for 5-GHz band WLAN systems," IEEE J. Select. Areas Commun., Vol. 21, 139-150, Feb. 2003.
doi:10.1109/JSAC.2002.807347 Google Scholar
17. Zwick, T., C. Fischer, D. Didascalou, and W. Wiesbeck, "A stochastic spatial channel model based on wave-propagation modeling," IEEE J. Select. Areas Commun., Vol. 18, 6-15, Jan. 2000.
doi:10.1109/49.821698 Google Scholar
18. Wallace, J. W., et al. "Modeling the indoor MIMO wireless channel," IEEE Trans. Antennas Propagation, Vol. 50, 591-599, May 2002.
doi:10.1109/TAP.2002.1011224 Google Scholar
19. Enayati, A. R., et al. "Reduced complexity maximum likelihood multiuser detection for OFDM-based IEEE 802.11a WLANs utilizing post-FFT mode," Proceedings of the IEEE PIMRC'06, Sept. 11 2006. Google Scholar