Vol. 85
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-09-18
A Model for Transition Between Outdoor and Indoor Propagation
By
Progress In Electromagnetics Research, Vol. 85, 147-167, 2008
Abstract
We present a novel outdoor-indoor radio wave propagation model. It predicts the electric field envelope Cumulative Distribution Function (CDF) in a room placed near a radio communication emitter. The experimental CDF obtained from the simulation, fits the experimental CDF obtained from a measurement campaign carried out over 19200 sampling points inside the room. The maximum deviation found between these CDFs is less than 1%. Kolmogorov-Smirnov test is employed to analyze the goodness of fit. P-values around 99% are reached. A comparison is made with other classical methods reported in the literature as ray-tracing (RT) and a hybrid method employing finite-difference time-domain (FDTD) together with RT. The proposed model significantly improves the results achieved in those previous investigations. Although we study the problem in three dimensions, the repetitive nature of the algorithm allows us to parallelize the computation process speeding the calculations.
Citation
Juan Blas Prieto Patricia Fernandez Reguero Ruben Mateo Lorenzo Toledo Evaristo Jose Abril Santiago Mazuelas Franco Alfonso Bahillo Martinez David Bullid , "A Model for Transition Between Outdoor and Indoor Propagation," Progress In Electromagnetics Research, Vol. 85, 147-167, 2008.
doi:10.2528/PIER08072101
http://www.jpier.org/PIER/pier.php?paper=08072101
References

1. Iskander, M. F. and Z. Yun, "Propagation prediction models for wireless communication systems," Transactions on Microwave Theory and Techniques, Vol. 50, 662-673, 2002.
doi:10.1109/22.989951

2. Seidel, S. Y. and T. S. Rappaport, "Site-specific propagation prediction for wireless in-building personal communication system design," IEEE Transactions on Vehicular Technology, Vol. 43, 879-891, 1994.
doi:10.1109/25.330150

3. Corazza, G. E., V. Degli-Esposti, M. Frullone, and G. Riva, "A characterization of indoor space and frequency diversity by ray-tracing modeling," IEEE Journal on Selected Areas in Communications, Vol. 14, 411-419, 1996.
doi:10.1109/49.490226

4. Yang, C., B. Wu, and C. Ko, "A ray-tracing method for modeling indoor wave propagation and penetration," IEEE Transactions on Antennas and Propagation, Vol. 46, 907-919, 1998.
doi:10.1109/8.686780

5. Liang, G. and H. L. Bertoni, "A new approach to 3D ray tracing for propagation in cities," IEEE Transactions on Antennas and Propagation, Vol. 46, 853-863, 1998.
doi:10.1109/8.686774

6. Zhang, Z., K. R. Soresen, Z. Yun, M. F. Iskander, and J. F. Harvey, "A ray-tracing approach for indoor/outdoor propagation through window structures," IEEE Transactions on Antennas and Propagation, Vol. 50, 742-748, 2002.
doi:10.1109/TAP.2002.1011242

7. Kara, A. and E. Yazgan, "Modelling of shadowing loss due to huge non-polygonal structures in urban radio propagation," Progress In Electromagnetics Research B, Vol. 6, 123-134, 2008.
doi:10.2528/PIERB08031209

8. Wang, N., Y. Zhang, and C. H. Liang, "Creeping ray-tracing algorithm of UTD method based on NURBS models with the source on surface," Journal of Electromagnetics Waves and Applications, Vol. 20, No. 14, 1981-1990, 2006.
doi:10.1163/156939306779322602

9. Liang, C., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
doi:10.2528/PIERB07102902

10. Blas, J., F. A. Lago, P. Fernandez, R. M. Lorenzo, and E. J. Abril, "Potential exposure assessment errors associated with body-worn RF dosimeters," Bioelectromagnetics, Vol. 28, 573-576, 2007.
doi:10.1002/bem.20355

11. Wang, M. Y., J. Xu, J. Wu, Y. B. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by doublenegative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
doi:10.1163/156939307783152777

12. Lee, F. W. H. and A. K. Y. Lai, "FDTD analysis of indoor radio propagation," IEEE International Symposium on Antennas and Propagation Society, Vol. 13, 1664-1667, 1998.

13. Pahlavan, K. and A. H. Levesque, Wireless Information Networks, Wiley Series in Telecommunications and Signal Processing, Wiley, 1995.

14. Talbi, L. and G. Y. Delisle, "Finite difference time domain characterization of indoor radio propagation," Progress In Electromagnetics Research, Vol. 12, 251-275, 1996.
doi:10.1163/156939307783239410

15. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and reflector effects on monopole antenna factor," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939306775777224

16. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

17. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The Transfer Function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851

18. Wang, Y., S. Safavi-Naeini, and S. K. Chaundhuri, "A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation," IEEE Transactions on Antennas and Propagation, Vol. 48, 743-754, 2000.
doi:10.1109/8.855493

19. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Human exposure to radio base-station antennas in urban environment," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, 1996-2002, 2000.
doi:10.1109/22.848494

20. Bernardi, P., M. Cavagnaro, P. D'Atanasio, E. Di Palma, S. Pisa, and E. Piuzzi, "FDTD, multiple-region/FDTD, raytracing/ FDTD," International Journal of Numerical Modelling, Vol. 15, 579-593, 2002.
doi:10.1002/jnm.470

21. Bernardi, P., M. Cavagnaro, R. Ceccetti, S. Pisa, E. Piuzzi, and O. Testa, "A UTD/FDTD investigation on procedures to assess compliance of cellular base-station antennas with human-humanexposure," Transactions on Microwave Theory and Techniques, Vol. 51, 2109-2417, 2003.

22. Martınez-Burdalo, M., A. Martın, V. Pizarro, and R. Villar, "An efficient FDTD-time-domain equivalent currents method for safety assessment in human exposure to base-station antennas in presence of obstacles," Microwave and Optical Technology Letters, Vol. 48, 1987-1990, 2006.
doi:10.1002/mop.21818

23. Simthson, A. G. and I. A. Glover, "Prediction of attenuation and delay-spread for systems with outdoor basestations and indoor users," Proceedings of the 9th European Conference on Wireless Technology, 265-268, 2006.
doi:10.1109/ECWT.2006.280487

24. Noori, N. and H. Oraizi, "Evaluation of MIMO channel capacity in indoor environments using vector parabolic equation method," Progress In Electromagnetics Research B, Vol. 4, 13-25, 2008.
doi:10.2528/PIERB07121903

25. Guo, S. X., Y. Gao, and L. X. Zhang, "Simulation research on turbo equlization algorithm based on microwave fading channel," PIER Letters, Vol. 4, 99-107, 2008.

26. Wu, B. I., F. C. A. I. Cox, and J. A. Kong, "Experimental methodology for non-thermal effects of electromagnetic radiation on biologics," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 4, 533-548, 2007.
doi:10.1163/156939307780616829

27. Lee, S. H. and R. C. Rudduck, "Aperture integration and GTD techniques used in the NEC reflector antenna code," IEEE Transactions on Antennas and Propagation, Vol. 33, 189-194, 1985.

28. Teh, C. H., F. Kung, and H. T. Chuah, "A path-corrected wall model for ray-tracing propagation modeling," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 207-214, 2006.
doi:10.1163/156939306775777288

29. Blas, J., A. Bahillo, S. Mazuelas, D. Bullido, P. Fernandez, R. M. Lorenzo, and E. J. Abril, "Scanning device for sampling the spatial distribution of the E-field," Proceedings of World Academy of Science, Engineering and Technology, Vol. 14, 199-203, 2007.

30. Helhel, S., S. Ozen, and H. Goksu, "Investigation of GSM signal variation depending weather conditions," Progress In Electromagnetics Research B, Vol. 1, 147-157, 2008.
doi:10.2528/PIERB07101503

31. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd Ed., Cambridge University Press, Cambridge, England, 1992.

32. Horikoshi, J., D. Tanaka, and T. Morinaga, "1.2 GHz band wave propagation measurements in concrete building for indoor radio communications," IEEE Transactions on Vehicular Technoloty, Vol. 35, 146-152, 1986.
doi:10.1109/T-VT.1986.24084