1. Choudhury, P. K., P. Khastgir, S. P. Ojha, D. K. Mahapatra, and O. N. Singh, "Design of an optical filter as a monochromatic selector from atomic emissions," J. Opt. Soc. Am. A, Vol. 9, 1007-1010, 1992.
doi:10.1364/JOSAA.9.001007 Google Scholar
2. Fink, Y., J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science, Vol. 282, 1679-1682, 1998.
doi:10.1126/science.282.5394.1679 Google Scholar
3. Zandi, O., Z. Atlasbaf, and K. Forooraghi, "Flat multilayer dielectric reflector antennas," Progress In Electromagnetics Research, Vol. 72, 1-19, 2007.
doi:10.2528/PIER07022604 Google Scholar
4. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701 Google Scholar
5. Maka, T., D. N. Chigrin, S. G. Romanov, and C. M. S. Torres, "Three dimensional photonic crystals in the visible regime," Progress In Electromagnetics Research, Vol. 41, 307-335, 2003. Google Scholar
6. Wu, C.-J., "Transmission and reflection in a periodic superconductor/dielectric film multilayer structure," Journal of Electromagnetic Waves and Applications, Vol. 19, 1991-1996, 2005.
doi:10.1163/156939305775570468 Google Scholar
7. Zhao, L. P., X. Zhai, B. Wu, T. Su, W. Xue, and C.-H. Liang, "Novel design of dual-mode bandpass filter using rectangle structure," Progress In Electromagnetics Research B, Vol. 3, 131-141, 2008.
doi:10.2528/PIERB07121003 Google Scholar
8. Rojas, J. A. M., J. Alpuente, J. PiEoeneiro, and R. Sanchez, "Rigorous full vectorial analysis of electromagnetic wave propagation in 1D," Progress In Electromagnetics Research, Vol. 63, 89-105, 2006.
doi:10.2528/PIER06042501 Google Scholar
9. Zheng, Q. R., Y. Q. Fu, and N. C. Yuan, "Characteristics of planar PBG structures with a cover layer," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1439-1453, 2006.
doi:10.1163/156939306779274264 Google Scholar
10. Chigrin, D. N., A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, "Observation of total omnidirectional reflection from a one-dimensional-dielectric lattice," Appl. Phys. A, Vol. 68, 25-28, 1999.
doi:10.1007/s003390050849 Google Scholar
11. Deopura, M., C. K. Ullal, B. Temelkuran, and Y. Fink, "Dielectric omnidirectional-visible reflector," Opt. Lett., Vol. 26, 1197-1199, 2001.
doi:10.1364/OL.26.001197 Google Scholar
12. Thomsen, M. and Z. L. Wu, "Polarizing and reflective coatings based on half-wave layer pairs," Appl. Opt., Vol. 36, 307-313, 1997.
doi:10.1364/AO.36.000307 Google Scholar
13. Monga, J. C., "Multilayer thin-film polarizers with reduced electric-field intensity," J. Mod. Opt., Vol. 36, 769-784, 1989.
doi:10.1080/09500348914550841 Google Scholar
14. MacNeille, S. M., "Beam splitter,", July 9 U. S. patent 2, 403, 731, 1946. Google Scholar
15. Mouchart, J., J. Begel, and E. Duda, "Modified MacNeille cube polarizer for a wide angular field," Appl. Opt., Vol. 28, 2847-2853, 1989. Google Scholar
16. Li, L. and J. A. Dobrowolski, "Visible broadband, wide-angle, thin-film multilayer polarizing beam splitter," Appl. Opt., Vol. 35, 2221-2225, 1996.
doi:10.1364/AO.35.002221 Google Scholar
17. Li, L. and J. A. Dobrowolski, "High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle," Appl. Opt., Vol. 39, 2754-2771, 2000.
doi:10.1364/AO.39.002754 Google Scholar
18. Hecht, E., Optics, 2002.
19. Li, B., K.-J. Lee, H.-T. Chou, and W. Gu, "A polarization compensation approach utilizing a paraboloid photonic-crystal structure for crossed-dipole excited reflector antennas," Progress In Electromagnetics Research, Vol. 85, 393-408, 2008.
doi:10.2528/PIER08081703 Google Scholar
20. Srivastava, S. K. and S. P. Ojha, "Photonic band gaps in one-dimensional metallic star waveguide structure," Progress In Electromagnetics Research, Vol. 84, 349-362, 2008.
doi:10.2528/PIER08080501 Google Scholar
21. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404 Google Scholar
22. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Design of photonic band gap filter," Progress In Electromagnetics Research, Vol. 81, 225-235, 2008.
doi:10.2528/PIER08010902 Google Scholar
23. Dubey, R. S. and D. K. Gautam, "Development of simulation tools to study optical properties of one-dimensional photonic crystals," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 849-860, 2008.
doi:10.1163/156939308784159408 Google Scholar
24. Li, L., "The design of optical thin film coatings with total and frustrated total internal reflection," Optics and Photonics News, 24-30, 2003. Google Scholar
25. Dobrowolski, J. A. and A. Waldorf, "High-performance thin film polarizer for the UV and visible spectral regions," Appl. Opt., Vol. 20, 111-116, 1981.
doi:10.1364/AO.20.000111 Google Scholar
26. Gilo, M. and K. Rabinovitch, "Design parameters of thin-film cubic-type polarizers for high power lasers," Appl. Opt., Vol. 26, 2518-2521, 1987. Google Scholar
27. Born, M. and E. Wolf, "Basic properties of the electromagnetic field," Principles of Optics, 1-70, Cambridge University Press, U.K., 1980. Google Scholar
28. Yeh, P., "Optics of periodic layered media," Optical Waves in Layered Media, 118-142, Wiley, New York, 1998. Google Scholar
29. Cowan, B., "Optical damage threshold of silicon for ultrafast infrared pulses," Proceedings of AIP Conference on Advanced Accelerator Concepts, Vol. 877, 837-843, 2006. Google Scholar
30. Bristow, A. D., V. N. Astratov, R. Shimada, I. S. Culshaw, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, and T. F. Krauss, "Polarization conversion in the reflectivity properties of photonic crystal waveguides," IEEE J. Q. E., Vol. 38, 880-884, 2002.
doi:10.1109/JQE.2002.1017601 Google Scholar
31. Marty, F., L. Rousseau, B. Saadany, B. Mercier, O. Francais, Y. Mita, and T. Bourouina, "Advanced silicon etching techniques based on deep reactive ion etching (DRIE) for silicon harms and 3D micro- and nano-structures," Microelectronics Journal, Elsevier Science, Vol. 36, 673-677, 2005. Google Scholar
32. Jeff Raaphorst, Process Engineer, Micralyne Inc. "DRIE-Deep Reactive Ion Etching,", http://www.micralyne.com/edition4.newslyne/html. Google Scholar