Vol. 88
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-11-19
Current Distributions Along a Receiving Thin Dipole Inside Ideal Anechoic and Reverberation Chambers
By
Progress In Electromagnetics Research, Vol. 88, 105-120, 2008
Abstract
This paper studies the correlation of a receiving thin dipole with an arbitrary load in both anechoic chamber (AC) and reverberation chamber (RC). In both cases, the method of moments is employed to calculate the current distributions along a thin dipole induced by external fields. In AC, a plane wave with a fixed incident angle and polarization is illuminated on the dipole; whereas in RC, the field is represented by an appropriate superposition of many incident plane waves with stochastic incident angles, polarizations and phases. Numerical results for the current distributions of a thin dipole with different loads and electrical lengths are presented and discussed in both chambers. It is demonstrated that the ratios with respect to current magnitudes at the arbitrary load of the thin dipole between AC and RC are determined by its directivity. In particular, the ratios with respect to current magnitudes along the entire dipole whose electrical length is less than half a wavelength are nearly constants regardless of the terminating load, which indicates that results obtained in both chambers are well correlated.
Citation
Weiye Zhong Zhongxiang Shen Yeow Kwang Roland Tai Wee Jin Koh , "Current Distributions Along a Receiving Thin Dipole Inside Ideal Anechoic and Reverberation Chambers," Progress In Electromagnetics Research, Vol. 88, 105-120, 2008.
doi:10.2528/PIER08102801
http://www.jpier.org/PIER/pier.php?paper=08102801
References

1. Corona, P., G. Latmiral, E. Paolini, and L. Piccioli, "Use of a reverberating enclosure for measurements of radiated power in the microwave range," IEEE Trans. Electromagn. Compat., Vol. 18, No. 2, 54-59, 1976.
doi:10.1109/TEMC.1976.303466

2. Corona, P., G. Latmiral, and E. Paolini, "Performance and analysis of a reverberating enclosure with variable geometry," IEEE Trans. Electromagn. Compat., Vol. 22, No. 1, 2-5, 1980.
doi:10.1109/TEMC.1980.303814

3. Ma, M., "Understanding reverberating chambers as an alternative facility for EMC testing," Journal of Electromagnetic Waves and Applications, Vol. 2, No. 3-4, 339-351, 1988.
doi:10.1163/156939388X00260

4. Rahman, H., "Electromagnetic susceptibility of a folded cable of finite thickness in a shielded enclosure to external excitation," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 10, 1349-1356, 1998.
doi:10.1163/156939398X01439

5. Hatfield, M., "Status of reverberation chamber standards," Proc. IEEE Int. Symp. EMC, 279-281, 2003.
doi:10.2528/PIER02050804

6. Kouveliotis, N., P. Trakadas, and C. Capsalis, "FDTD modeling of a vibrating intrinsic reverberation chamber," Progress In Electromagnetics Research, Vol. 39, 47-59, 2003.
doi:10.2528/PIER02050804

7. Wang, Y., W. Koh, and C. Lee, "Coupling cross section and shielding effectiveness measurements on a coaxial cable by both mode-tuned reverberation chamber and gtem cell methodologies," Progress In Electromagnetics Research, Vol. 47, 61-73, 2004.
doi:10.2528/PIER03100101

8. Zhao, H. and Z. Shen, "Modal-expansion analysis of a monopole in vibrating reverberation chamber," Progress In Electromagnetics Research, Vol. 85, 303-322, 2008.
doi:10.2528/PIER08090209

9. Musso, L., F. Canavero, B. Demoulin, and V. Berat, "Radiated immunity testing of a device with an external wire: Repeatability of reverberation chamber results and correlation with anechoic chamber results," Proc. IEEE Int. Symp. EMC, 828-833, 2003.

10. Koepke, G., D. Hill, and J. Ladbury, "Directivity of the test device in EMC measurement," Proc. IEEE Int. Symp. EMC, Reverberation Chamber Workshop, 535-539, 2000.

11. Freyer, G. and M. Backstrom, "Comparison of anechoic and reverberation chamber coupling data as a function of directivity pattern," Proc. IEEE Int. Symp. EMC, 615-620, 2000.

12. Freyer, G. and M. Backstrom, "Impact of equipment response characteristics on anechoic and reverberation chamber test results," Proc. EMC Europe, Int. Symp. Electromagnetic Compatibility, Vol. 1, 51-55, 2002.

13. Moglie, F. and A. Pastore, "FDTD analysis of plane waves superposition to simulate susceptibility tests in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 195-202, 2006.
doi:10.1109/TEMC.2006.870793

14. Chang, D., S. Lee, and L. Rispin, "Simple formula for current on a cylindrical receiving antenna," IEEE Trans. Antennas Propagat., Vol. 26, No. 5, 683-690, 1978.
doi:10.1109/TAP.1978.1141906

15. Huang, E. and A. Fung, "An application of sampling theorem to moment method simulation in surface scattering," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 531-546, 2006.
doi:10.1163/156939306776117063

16. Selcuk, A. and B. Saka, "A general method for the analysis of curved wire antennas," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 175-188, 2007.
doi:10.1163/156939307779378835

17. Su, C. and T. Sarkar, "A new formula for the evaluation of the impedance matrix in the method of moments," Progress In Electromagnetics Research, Vol. 22, 85-105, 1999.
doi:10.2528/PIER98081501

18. Lashab, M., F. Benabdelaziz, and C.-E. Zebiri, "Analysis of electromagnetics scattering from reflector and cylindrical antennas using wavelet-based moment method," Progress In Electromagnetics Research, Vol. 76, 357-368, 2007.
doi:10.2528/PIER07071401

19. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
doi:10.2528/PIER07122502

20. Harrington, R., Field Computation by Moment Methods, Macmillan, New York, 1968.

21. Tai, C., "On the definition of effective aperture of antenna," IEEE Trans. Antennas Propagat., Vol. 9, 224-225, 1961.
doi:10.1109/TAP.1961.1144972

22. Hill, D., "Plane wave integral representation for fields in reverberation chambers," IEEE Trans. Electromagn. Compat., Vol. 40, No. 3, 209-217, 1998.
doi:10.1109/15.709418

23. Hill, D., "Spatial correlation function for fields in a reverberation chamber," IEEE Trans. Electromagn. Compat., Vol. 37, No. 1, 138, 1995.
doi:10.1109/15.350256

24. Musso, L., V. Berat, F. Canavero, and B. Demoulin, "A plane wave Monte Carlo simulation method for reverberation chambers," Proc. EMC Europe, Int. Symp. Electromagnetic Compatibility, Vol. 1, 45-50, 2002.

25. Balanis, C., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, New York, 2005.

26. Gronwald, F., "The influence of electromagnetic singularities on an active dipole antenna within a cavity," Advances in Radio Science, Vol. 1, 57-61, 2003.