1. Adler, A., T. Dai, and W. R. B. Lionheart, "Temporal image reconstruction in electrical impedance tomography," Physiol. Meas., Vol. 28, S1-S11, 2007.
doi:10.1088/0967-3334/28/7/S01 Google Scholar
. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1565-1574, 2008.
doi:10.1163/156939308786390021 Google Scholar
3. Cheng, X. X., B. I. Wu, H. Chen, and J. A. Kong, "Imaging of objects through lossy layer with defects," Progress In Electromagnetics Research, PIER 84, 11-26, 2008. Google Scholar
4. Li, Y. and W. Q. Yang, "Image reconstruction by nonlinear Landweber iteration for complicated distributions," Meas. Sci. Technol., Vol. 19, 094014(8pp), 2008. Google Scholar
5. Huang, C. H., Y. F. Chen, and C. C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790 Google Scholar
6. Franceschini, G., M. Donelli, D. Franceschini, M. Benedetti, P. Rocca, and A. Massa, "Microwave imaging from amplitude-only data-advantages and open problems of a two-step multi-resolution strategy," Progress In Electromagnetics Research, PIER 83, 397-412, 2008. Google Scholar
7. Marashdeh, Q., W. Warsito, L. S. Fan, and F. L. Teixeira, "A nonlinear image reconstruction technique for ECT using a combined neural network approach," Meas. Sci. Technol., Vol. 17, No. 8, 2097-2103, 2006.
doi:10.1088/0957-0233/17/8/007 Google Scholar
8. Nurge, M. A., "Electrical capacitance volume tomography with high contrast dielectrics using a cuboid sensor geometry," Meas. Sci. Technol., Vol. 18, No. 5, 1511-1520, 2007.
doi:10.1088/0957-0233/18/5/042 Google Scholar
9. Olszewski, T., P. Brzeski, J. Mirkowski, A. Pl»askowski, W. Smolik, and R. Szabatin, "Modular capacitance tomograph," Proc. 4th International Symposium on Process Tomography in Warsaw, 2006. Google Scholar
10. Romanowski, A., , K. Grudzien, R. Banasiak, R. A. Williams, and D. Sankowski, "Hopper flow measurement data visualization: Developments towards 3D," Proc. 5th World Congress on Industrial Process Tomography, Bergen, Norway, 2006. Google Scholar
11., Seppanen, A., M. Vauhkonen, P. Vauhkonen, E. Somersalo, and J. P. Kaipio, "Fluid dynamical models and state estimation in process tomography: Effect due to inaccuracies in flow fields," Journal of Electronic Imaging, Vol. 10, No. 3, 630-640, 2001.
doi:10.1117/1.1379976 Google Scholar
12. Schmitt, U. and A. K. Louis, "Efficient algorithms for the regularization of dynamic inverse problems --- Part I: Theory," Inverse Problems, Vol. 18, 645-658, 2002.
doi:10.1088/0266-5611/18/3/308 Google Scholar
13. Schmitt, U., A. K. Louis, C. H. Wolters, and M. Vauhkonen, "Efficient algorithms for the regularization of dynamic inverse problems: II. Applications," Inverse Problems, Vol. 18, No. 1, 659-676, 2002.
doi:10.1088/0266-5611/18/3/309 Google Scholar
14. Serdyuk, V. M., "Dielectric study of bound water in grain at radio and microwave frequencies," Progress In Electromagnetics Research, 379-406, 2008.
doi:10.2528/PIER08081103 Google Scholar
15. Soleimani, M., "Three-dimensional electrical capacitance tomog-raphy imaging," Insight, Non-destructive Testing and Condition Monitoring, Vol. 48, No. 10, 613-617, 2006.
doi:10.1784/insi.2006.48.10.613 Google Scholar
16. Soleimani, M., M. Vauhkonen, W. Q. Yang, A. J. Peyton, B. S. Kim, and X. Ma, "Dynamic imaging in electrical capacitance tomography and electromagnetic induction tomography using a Kalman filter," Meas. Sci. Tech., Vol. 18, No. 11, 3287-3294, 2007.
doi:10.1088/0957-0233/18/11/004 Google Scholar
17. Soleimani, M., H. Wang, Y. Li, and W. Yang, "A comparative study of three dimensional electrical capacitance tomography," International Journal for Information Systems Sciences, Vol. 3, No. 2, 283-291, 2007. Google Scholar
18. Wajman, R., R. Banasiak, L. Mazurkiewicz, D. Dyakowski, and D. Sankowski, "Spatial imaging with 3D capacitance measurements," Meas. Sci. Technol., Vol. 17, No. 8, 2113-2118, 2006.
doi:10.1088/0957-0233/17/8/009 Google Scholar
19. Warsito, W., Q. Marashdeh, and L. S. Fan, "Electrical capacitance volume tomography," IEEE Sensors Journal, Vol. 7, No. 3-4, 525-535, 2007.
doi:10.1109/JSEN.2007.891952 Google Scholar
20. Warsito, W. and L.-S. Fan, "Development of 3-dimensional electrical capacitance tomography based on neural network multi-criterion optimization image reconstruction," Proc. 3rd World Congress on Industrial Process Tomography (Banff), 942-947, 2003. Google Scholar
21. Warsito, W. and L. S. Fang, "Imaging the bubble behavior using the 3-D electric capacitance tomograph," Chem. Eng. Sci., Vol. 60, No. 22, 6073-6084, 2005.
doi:10.1016/j.ces.2005.01.033 Google Scholar
22. Yang, W. Q., "Key issues in designing capacitance tomography sensors," IEEE Conference on Sensors, 497-505, Daegu, Korea, October 22-25, 2006. Google Scholar
23. Yang, W. Q. and G. L. Pen, "Review of image reconstruction algo-rithms for electrical capacitance tomography, Part 1: Principles," Proc. International Symposium on Process Tomography in Poland (Wroclaw), 123-132, 2002. Google Scholar
24. Zacharopoulos, A. and S. Arridge, "3D shape reconstruction in optical tomography using spherical harmonics and BEM," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1827-1836, 2006.
doi:10.1163/156939306779292165 Google Scholar
25. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F. B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786 Google Scholar