Vol. 91
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-03-10
A Simple Approach for Evaluating the Reciprocity of Materials Without Using Any Calibration Standard
By
Progress In Electromagnetics Research, Vol. 91, 139-152, 2009
Abstract
A simple approach for evaluation of the reciprocity of materials using raw scattering parameter measurements is proposed. This approach not only reduces the overall measurement time but also eliminates the need for calibrating the measurement system since it uses calibration-independent measurements. We have derived a metric function for reflecting and nonreflecting cells, which are used to house the sample under test. This function does not depend on electrical properties of materials and their lengths, and whether the cell is reflecting. We have also investigated the effects of the sample length and air pockets between sample external surfaces and cell inner walls on the performance of the evaluation of sample reciprocity.
Citation
Ugur Cem Hasar O. Simsek , "A Simple Approach for Evaluating the Reciprocity of Materials Without Using Any Calibration Standard," Progress In Electromagnetics Research, Vol. 91, 139-152, 2009.
doi:10.2528/PIER09012905
http://www.jpier.org/PIER/pier.php?paper=09012905
References

1. Chen, L. F., et al., Microwave Electronics: Measurement and Materials Characterization, JohnWiley & Sons, West Sussex, England, 2004.

2. Nyfors, E., "Industrial microwave sensors — A review," Subsurface Sensing Tech. and Appl., Vol. 1, 23-43, 2000.
doi:10.1023/A:1010118609079

3. Hebeish, A. A., et al., "Factors affecting the performance of the radar absorbant textile materials of different types and structures," Progress In Electromagnetics Research B, Vol. 3, 219-226, 2008.
doi:10.2528/PIERB07121702

4. Janezic, M. D. and J. A. Jargon, "Complex permittivity determination from propagation constant measurements," IEEE Microwave Guided Wave Lett., Vol. 9, 76-78, 1999.
doi:10.1109/75.755052

5. Huynen, I., C. Steukers, and F. Duhamel, "A wideband line-line dielectrometric method for liquids, soils, and planar substrates ," IEEE Trans. Instrum. Meas., Vol. 50, 1343-1348, 2001.
doi:10.1109/19.963208

6. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Two new measurement methods for explicit determination of complex permittivity," IEEE Trans. Microwave Theory Tech., Vol. 46, 1614-1619, 1998.
doi:10.1109/22.734537

7. Baek, K. H., H. Y. Sung, and W. S. Park, "A 3-position transmission/reflection method for measuring the permittivity of low loss materials," IEEE Microwave Guided Wave Lett., Vol. 5, 3-5, 1995.
doi:10.1109/75.382378

8. Hasar, U. C., "Calibration-independent method for complex permittivity determination of liquid and granular materials," Electron. Lett., Vol. 44, 585-586, 2008.
doi:10.1049/el:20080242

9. Hasar, U. C., "A new calibration-independent method for complex permittivity extraction of solid dielectric materials," IEEE Microw. Wireless Compon. Lett., Vol. 18, 788-790, 2008.
doi:10.1109/LMWC.2008.2007699

10. Hasar, U. C. and O. Simsek, "A position-insensitive and nonsingular method for dielectric measurements of solid materials," J. Phys. D: Applied Phys., 2009.

11. Hasar, U. C., "A self-checking technique for materials characterization using calibration-independent measurements of reflecting lines," Microwave Opt. Technol. Lett., Vol. 51, 129-132, 2009.
doi:10.1002/mop.23978

12. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid acrowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.2528/PIERL08091402

13. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress in Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501

14. Kurokawa, K., "Power waves and the scattering matrix," IEEE Trans. Microw. Theory Tech., Vol. 13, 194-202, 1965.
doi:10.1109/TMTT.1965.1125964

15. Wan, C., B. Nauwelaers, W. De Raedt, and M. Van Rossum, "Complex permittivity measurement method based on asymmetry of reciprocal two-ports," Electron. Lett., Vol. 32, 1497, 1996.
doi:10.1049/el:19960957

16. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, New Jersey, NJ, 1989.

17. Lee, M. Q. and S. Nam, "An accurate broadband measurement of substrate dielectric constant," IEEE Microwave Guided Wave Lett., Vol. 6, 168-170, 1996.
doi:10.1109/75.481091

18. Reynoso-Hernandez, J. A., et al., "An improved method for estimation of the wave propagation constant γ in broadband uniform millimeter wave transmission line," Microwave Opt. Technol. Lett., Vol. 22, 268-271, 1999.
doi:10.1002/(SICI)1098-2760(19990820)22:4<268::AID-MOP16>3.0.CO;2-6

19. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Elsevier, New York, NY, 2005.

20. Challa, R. K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with as non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress in Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001

21. Khalaj-Amirhosseini, K., "Closed form solutions for nonuniform transmission lines," Progress in Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

22. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706

23. Hasar, U. C., "A fast and accurate amplitude-only transmissionreflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, 2129-2135, 2008.
doi:10.1109/TMTT.2008.2002229

24. Nishikata, A., "A swept-frequency measurement of complex permittivity and complex permeability of a columnar specimen inserted in a rectangular waveguide," IEEE Trans. Microw. Theory Tech., Vol. 55, 1554-1567, 2007.
doi:10.1109/TMTT.2007.900340

25. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NIST Project, Boulder, CO, Tech. Note 1355, 1992.

26. Somlo, P. I., "A convenient self-checking method for the automated microwave measurement of μ and ε," IEEE Trans. Instrum. Meas., Vol. 42, 213-216, 1993.
doi:10.1109/19.278551

27. Buyukozturk, O., T. Y. Yu, and J. A. Ortega, "A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements," Cem. Concr. Compos., Vol. 28, 349-359, 2006.
doi:10.1016/j.cemconcomp.2006.02.004

28. Hasar, U. C., "Free-space nondestructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674)

29. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Hoboken, NJ, 2005.

30. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
doi:10.2528/PIERB08072005