Vol. 91
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-03-19
Development and Electromagnetic Characterization of Adaptable Open-Architecture WLAN Systems
By
Progress In Electromagnetics Research, Vol. 91, 229-242, 2009
Abstract
The construction and comprehensive electromagnetic analysis of a novel class of WLAN layouts is presented in this paper. The main purpose is to construct a wireless system according to the 802.11 a/b/g standards, which enables significantly larger and more reliable data transfer rates, making use of a new largescale field prediction technique, based on the parabolic equation with finite differences. Thus, four distinct structures, based on two different operating systems and two different hardware architectures, are proposed and elaborately examined. On the other hand, for the prediction algorithm a 3D wide-angle parabolic equation scheme is devised and a recursive approximation of the forward wave equation is accomplished. Unlike existing methods that characterize obstacles by means of surface impedance boundary conditions, a more rigorous approach, by treating them as penetrable objects with known material features is utilized. In this manner, the "interface" problem is systematically formulated and high levels of accuracy are attained. Moreover, the proposed technique is proven to be sufficiently faster and numerically more efficient, as the lattice, so constructed, along with the numbering of degrees of freedom remain unchanged from a parabolic equation plane to another. Extensive results and measurements certify the aforementioned merits for various realistic exterior and interior configurations.
Citation
Vassilios P. Papantoniou Thomas Xenos , "Development and Electromagnetic Characterization of Adaptable Open-Architecture WLAN Systems," Progress In Electromagnetics Research, Vol. 91, 229-242, 2009.
doi:10.2528/PIER09021002
http://www.jpier.org/PIER/pier.php?paper=09021002
References

1., "Wireless MAC and PHY specifications: High speed physical layer in the 5GHz band,", IEEE 802.11a/D7.0, 1999.
doi:10.1109/74.683539

2., "Wireless MAC and PHY specifications: Further higher-speed physical layer extension in the 2.4 GHz band,", IEEE 802.11g, 2003.

3. Catedra, M. F., J. Perez, F. Saez de Adana, and O. Gutierrez, "Efficient ray-tracing techniques for 3D analyses of propagation in mobile communications: Application to picocell and microcell scenarios," IEEE Antennas Propag. Magazine, Vol. 40, No. 2, 15-28, Apr. 1998.
doi:10.1109/TAP.2008.916893

4. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, PIER 75, 357-381, 2007.

5. Fuschini, F., H. El-Sallabi, V. Degli-Esposti, L. Vuokko, D. Guiducci, and P. Vainikainen, "Analysis of multipath propagation in urban environment through multidimensional measurements and advanced ray tracing simulation," IEEE Trans. Antennas Propag., Vol. 56, No. 3, 848-857, Mar. 2008.

6. Alvar, N. S., A. Ghorbani, and H. R. Amindavar, "A novel hybrid approach to ray tracing acceleration based on pre-processing and bounding volumes," Progress In Electromagnetics Research, PIER 82, 19-32, 2008.
doi:10.1163/156939307783134344

7. Wang, F. J. and J. S. Zhang, "Wideband cavity-backed patch antenna for PCS/IMT2000/2.4GHz WLAN," Progress In Electromagnetics Research, PIER 74, 39-46, 2007.
doi:10.1163/156939308784158724

8. Qin, W., "A novel patch antenna with a T-shaped parasitic strip for 2.4/5.8GHz WLAN applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2311-2320, 2007.
doi:10.2528/PIERB07111812

9. Liu, L., J. P. Xiong, Y. Z. Yin, and Y. L. Zhao, "A novel dual-F-shaped planar monopole antenna for ultrawideband communications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1106-1114, 2008.
doi:10.2528/PIERC08030501

10. El-Fishawy, N. A., M. Shokair, and W. Saad, "Proposed Mac protocol versus IEEE 802.15.3a for multimedia transmission over UWB networks ," Progress In Electromagnetics Research B, Vol. 2, 189-206, 2008.
doi:10.2528/PIERL08051102

11. Li, Z., C. X. Zhang, G. M. Wang, and W. R. Su, "Designs on CPW-FED aperture antenna for ultrawideband applications," Progress In Electromagnetics Research C, Vol. 2, 1-6, 2008.
doi:10.2528/PIERM08051203

12. Gao, G. P., X. X. Yang, and J. S. Zhang, "A printed volcano smoke antenna for UWB and WLAN communications," Progress In Electromagnetics Research Letters, Vol. 4, 55-61, 2008.

13. Sobli, N. M. and H. E. Abd-El-Raouf, "Design of a compact printed band-notched antenna for ultrawideband communications," Progress In Electromagnetics Research M, Vol. 3, 57-78, 2008.
doi:10.2528/PIERB08072603

14. Han, T. Y. and C. Y. D. Sim, "Reconfigurable monopolar circular patch antenna for wireless communication systems," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 635-642, 2007.
doi:10.1163/156939308784160640

15. Ghassemi, N., J. Rashed-Mohassel, M. H. Neshati, S. Tavakoli, and M. Ghassemi, "A high gain dual stacked aperture coupled microstrip antenna for wideband applications," Progress In Electromagnetics Research B, Vol. 9, 127-135, 2008.
doi:10.2528/PIERL08012801

16. Mahmoudian, A. and K. Forooraghi, "A novel planar leaky wave antenna for wireless application," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2/3, 313-324, 2008.
doi:10.1163/156939308784159462

17. Jolani, F., A. M. Dadgarpour, and H. R. Hassani, "Compact Mslot folded patch antenna for WLAN," Progress In Electromagnetics Research Letters, Vol. 3, 35-42, 2008.
doi:10.2528/PIERB08071406

18. Wang, H., C. Z. Gu, M. K. Mu, W. Z. Cui, W. Ma, J. Huangfu, and L. X. Ran, "Design of leakywave coaxial cable compatible for both 2G and 3G wireless communications," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 731-740, 2008.
doi:10.1163/156939308784159516

19. Ren, W., "Compact dual-band slot antenna for 2.4/5GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.

20. Molina-Garcia-Pardo, J. M., J. V. Rodriguez, and L. Juan-Llacer, "Underestimation of the RMS delay spread when using uniform tapped delay lines in wireless communications ," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 872-881, 2008.
doi:10.1109/8.805904

21. Li, X., L. Yang, S. X. Gong, and Y. J. Yang, "Bidirectional high gain antenna for WLAN applications," Progress In Electromagnetics Research Letters, Vol. 6, 99-106, 2009.
doi:10.1049/el:19961060

22. Zelley, C. A. and C. C. Constantinou, "A three-dimensional parabolic equation applied to VHF/UHF propagation over irregular terrain," IEEE Trans. Antennas Propag., Vol. 47, No. 10, 1586-1596, Oct. 1999.
doi:10.1109/TAP.2003.815415

23. Zaporozhets, A. A. and M. F. Levy, "Modeling of radiowave propagation in urban environment with parabolic equation method," Electron. Lett., Vol. 32, No. 17, 1615-1616, 1996.
doi:10.1109/TAP.2004.840853

24. Janaswamy, R., "Path loss predictions in the presence of buildings on flat terrain: A 3-D vector parabolic equation approach," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1716-1728, Aug. 2003.
doi:10.1109/8.477075

25. Awadallah, R. S., J. Z. Gehman, J. R. Kuttler, and M. H. Newkirk, "Effects of lateral terrain variations on tropospheric radar propagation," IEEE Trans. Antennas Propag., Vol. 53, No. 1, 420-434, Jan. 2005.

26. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propag., Vol. 43, No. 12, 1460-1463, Dec. 1995.