Vol. 91
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-04-06
Modified Plane Wave Method Analysis of Dielectric Plasma Photonic Crystal
By
Progress In Electromagnetics Research, Vol. 91, 319-332, 2009
Abstract
Dispersion characteristics of two types of two-dimension dielectric plasma photonic crystal are studied based on modified plane wave method. Firstly, the eigenvalue equations of TM mode of type-1 and type-2 structures are derived respectively; their dispersion curves are confirmed by the software simulation. Secondly, the influences of normalized plasma frequency, filling factor and relative dielectric constant on photonic band gap, and relative photonic band gap width are analyzed respectively, and some corresponding physical explanations are also given. These results would provide theoretical instructions for designing new photonic crystal devices using plasmadielectric structure.
Citation
Li-Mei Qi Ziqiang Yang , "Modified Plane Wave Method Analysis of Dielectric Plasma Photonic Crystal," Progress In Electromagnetics Research, Vol. 91, 319-332, 2009.
doi:10.2528/PIER09022605
http://www.jpier.org/PIER/pier.php?paper=09022605
References

1. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physis and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059

2. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486

3. Banaei, H. A. and A. Rostami, "A novel proposed for passive all-optical demultiplexer for DWMD systems using 2-D photonic crystals," J. of Electromagn. Waves and Appl., Vol. 22, 471-482, 2008.
doi:10.1163/156939308784150263

4. Manolatou, C., S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, "High-density integrated optics," J. Lightwave Technol., Vol. 17, 1682-1692, 1999.
doi:10.1109/50.788575

5. Minin, I.V., O. V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
doi:10.2528/PIERB08041501

6. Mizuguchi, J., Y. Tanaka, S. Tamura, and M. Notomi, "Focusing of light in a three-dimensional cubic photonic crystal," Phys. Rev. B, Vol. 67, 075109-075117, 2003.
doi:10.1103/PhysRevB.67.075109

7. Chen, J. Y., J. Y. Yeh, L. W. Chen, Y. G. Li, and C. C. Wang, "Design and modeling for enhancement of light extraction in light-emitting diodes with archimedean lattice photonic crystals ," Progress In Electromagnetics Research B, Vol. 11, 265-279, 2009.
doi:10.2528/PIERB08112704

8. Hojo, H. and A. Mase, "Dispersion relation of electromagnetic waves in one dimensional plasma photonic crystals," J. Plasma Fusion Research, Vol. 80, No. 2, 89-90, 2004.
doi:10.1585/jspf.80.89

9. Liu, S., W. Hong, and N. Yuan, "Finite-difference time-domain analysis of unmagnetized plasma photonic crystals," International Journal of Infrared and Millimeter Waves, Vol. 27, No. 3, 403-422, 2006.
doi:10.1007/s10762-006-9075-x

10. Sakai, O., T. Sakaguchi, and K. Tachibana, "Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas," Appl. Phys. Lett., Vol. 87, No. 24, 241505-1-3, 2005.
doi:10.1063/1.2147709

11. Sakai, O. and K. Tachibana, "Properties of electromagnetic wave propagation emerging in 2-D periodic plasma structures," IEEE Transactions on Plasma Science, Vol. 35, No. 5, 1267-1273, 2007.
doi:10.1109/TPS.2007.906133

12. Tachibana, K., Y. Kishimoto, S. Kawai, T. Sakaguchi, and O. Sakai, "Diagnostics of microdischarge-integrated plasma sources for display and material processing," Plasma Phys. Contr. Fusion, Vol. 47, A167-A177, 2005.
doi:10.1088/0741-3335/47/5A/012

13. Sakai, O., T. Sakaguchi, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. I. Theoretical derivation of band structures of electromagnetic waves," J. Appl. Phys., Vol. 101, No. 7, 073304-1-9, 2007.
doi:10.1063/1.2713939

14. Sakaguchi, T., O. Sakai, and K. Tachibana, "Photonic bands in two-dimensional microplasma arrays. II. Band gaps observed in millimeter and subterahertz ranges," J. Appl. Phys., Vol. 101, No. 7, 073305-1-7, 2007.
doi:10.1063/1.2713940

15. Hojo, H., N. Uchida, and A. Mase, "Beaming of millimeter waves from plasma photonic crystal waveguides," Plasma and Fusion Research: Rapid Communications, Vol. 1, 2006.

16. Villa-Villa, F., J. A. Gaspar-Armenta, and A. Mendoza-Suarez, "surface modes in one dimensional photonic crystals that include left handed materials," J. of Electromagn. Waves and Appl., Vol. 21, No. 4, 485-499, 2007.
doi:10.1163/156939307779367323

17. Kuzmiak, V., A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic componets," Phys. Rev. B, Vol. 50, No. 23, 16835-16844, 1994.
doi:10.1103/PhysRevB.50.16835

18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The finite-difference time-domain, 2nd edition, Artech House, Boston, 2000.

19. Moreno, E., D. Erni, and C. Hafner, "Band structure computations of metallic photonic crystals with the multiple multipole method," Phys. Rev. B, Vol. 65, No. 15, 155120-1-10, 2002.
doi:10.1103/PhysRevB.65.155120

20. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omnidirection reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

21. Dubey, R. S. and D. K. Gautam, "Development of simulation tools to study optical properties of one-dimentional photonic crystals," J. of Electromagn. Waves and Appl., Vol. 22, 849-860, 2008.
doi:10.1163/156939308784159408

22. Kretschmann, M., "Phase diagrams of surface plasmon polaritonic crystals," Phys. Rev. B, Vol. 68, No. 12, 125419-1-5, 2003.
doi:10.1103/PhysRevB.68.125419

23., Handbook for CST Microwave Studio V5.1, 2006.

24. Sakurai, J., Modern Quantum Mechanics,, Addison-Wesley, New York, 1994.

25. Meade, R. D., A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, "Nature of the photonic band gap: Some insights from a field analysis," J. Opt. Soc. Am. B., Vol. 10, 328-332, 1993.
doi:10.1364/JOSAB.10.000328

26. Joannopoulos, J. D., S. G. Johnson, J. N.Winn, and R. D. Meade, Photonic Crystals-Molding the Flow of Light, Princeton University Press, Princeton, 2008.