1. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 237-246, 2008.
doi:10.1109/TBME.2007.900564 Google Scholar
2. Guo, B., Y. Wang, J. Li, and P. Stoica, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350 Google Scholar
3. Takenaka, T., H. Zhou, and T. Tanaka, "Inverse scattering for a three-dimensional object in the time domain," J. Opt. Soc. Am. A, Vol. 20, No. 10, 1867-1874, 2003.
doi:10.1364/JOSAA.20.001867 Google Scholar
4. Fear, E., J. Sill, and M. Stuchly, "Experimental feasibility study of confocal microwave imaging for breast tumor detection," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 3, 887-892, 2003.
doi:10.1109/TMTT.2003.808630 Google Scholar
5. Li, D., P. Meaney, T. Raynolds, S. Pendergrass, M. Fanning, and K. Paulsen, "Parallel-detection microwave spectroscopy system for breast imaging," Review of Scientific Instruments, Vol. 75, No. 7, 2305-2313, 2004.
doi:10.1063/1.1764609 Google Scholar
6. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008. Google Scholar
7. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
8. Fang, Q., P. Meaney, S. Geimer, A. Streltsov, and K. Paulsen, "Microwave image reconstruction from 3-D fields coupled to 2-D parameter estimation," IEEE Trans. Med. Imag., Vol. 23, No. 4, 475-484, 2004.
doi:10.1109/TMI.2004.824152 Google Scholar
9. Meaney, P., M. Fanning, T. Raynolds, C. Fox, Q. Fang, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, No. 2, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016 Google Scholar
10. Poplack, S., T. Tosteson, W. Wells, B. Pogue, P. Meaney, et al. "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, No. 2, 350-359, 2007.
doi:10.1148/radiol.2432060286 Google Scholar
11. Sill, J. and E. Fear, "Tissue sensing adaptive radar for breast cancer detection --- Experimental investigation of simple tumor models," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 11, 3312-3319, 2005.
doi:10.1109/TMTT.2005.857330 Google Scholar
12. Bond, E., X. Li, S. Hagness, and B. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas and Propagat., Vol. 51, No. 8, 1690-1705.
doi:10.1109/TAP.2003.815446 Google Scholar
13. Li, X., S. Davis, S. Hagness, D. D. Van Weide, and B. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 8, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686 Google Scholar
14. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Transactions on Biomedical Engineering, Vol. 45, 1470-1479, 1998.
doi:10.1109/10.730440 Google Scholar
15. Hagness, S. C., A. Taflove, and J. E. Bridges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna-array element," IEEE Trans. Antennas and Propagat., Vol. 47, 783-791, 1999.
doi:10.1109/8.774131 Google Scholar
16. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
17. Lazebnik, M., L. McCartney, D. Popovic, C. M. J. Lindstrom, et al. "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/10/001 Google Scholar
18. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792-2800, 2008.
doi:10.1109/TBME.2008.2002130 Google Scholar
19. Van Dongen Koen, W. A. and W. M. D. Wright, "A full vectorial contrast source inversion scheme for three-dimensional acoustic imaging of both compressibility and density profiles," The Journal of the Acoustical Society of America, Vol. 121, 1538-1549, 2007.
doi:10.1121/1.2431333 Google Scholar
20. Caorsi, S., G. L. Gragnani, and M. Pastorino, "Redundant electromagnetic data for microwave imaging of three-dimensional dielectric objects," IEEE Trans. Antennas and Propagat., Vol. 42, No. 5, 581-589, 1994.
doi:10.1109/8.299556 Google Scholar
21. Lin, J. H. and W. C. Chew, "Solution of the three-dimensional electromagnetic inverse problem by the local shape function and the conjugate gradient fast Fourier transform methods," J. Opt. Soc. Am. A, Vol. 14, No. 11, 3037-3045, 1997.
doi:10.1364/JOSAA.14.003037 Google Scholar
22. Semenov, S. Y., R. H. Svenson, A. E. Bulyshev, et al. "Three-dimensional microwave tomography: Experimental prototype of the system and vector Born reconstruction method," IEEE Transactions on Biomedical Engineering, Vol. 46, No. 8, 937-946, 1999.
doi:10.1109/10.775403 Google Scholar
23. Abubakar, A., P. M. D. Van Berg, and B. Kooij, "A conjugate gradient contrast source technique for 3D profile inversion," IEICE Trans. Electron., Vol. E83-C, 1864-1874, 2000. Google Scholar
24. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagat., Vol. 14, 302-307, 1966. Google Scholar
25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd edition, Artech House, 2005.
26. Meaney, P., Q. Fang, and K. Paulsen, "Data collection strategies and their impact on 3-D microwave imaging of the breast," IEEE Antennas and Propagation Society International Symposium, Vol. 1B, 183-186, 2005. Google Scholar
27. Winters, D. W., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Trans. Antennas and Propagat., Vol. 54, No. 11, 3517-3528, 2006.
doi:10.1109/TAP.2006.884296 Google Scholar
28. Williams, T., E. Fear, and D. Westwick, "Tissue sensing adaptive radar for breast cancer detection- investigations of an improved skin-sensing method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1308-1314, 2006.
doi:10.1109/TMTT.2006.871224 Google Scholar
29. Winters, D., J. Shea, E. Madsen, G. Frank, B. Van Veen, and S. Hagness, "Estimation of the frequency-dependent average dielectric properties of breast tissue using a time-domain inverse scattering technique," IEEE Transactions on Biomedical Engineering, Vol. 55, No. 1, 247-256, 2008.
doi:10.1109/TBME.2007.901028 Google Scholar