Vol. 92
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-05-08
Resistive Sensor for High Power Microwave Pulse Measurement of Te01 Mode in Circular Waveguide
By
Progress In Electromagnetics Research, Vol. 92, 267-280, 2009
Abstract
A resistive sensor (RS) devoted for high power microwave pulse measurement in cylindrical waveguide is considered. The modeling results of the interaction of the TE01 (H01) wave with a semiconductor plate with contacts on sidewalls of the plate placed on a wall of the circular waveguide are presented. A finite-difference time-domain (FDTD) method was employed for the calculation of the electromagnetic field components, reflection coefficient from the semiconductor obstacle, and the average electric field in it. The features of the resonances have been used to engineer the frequency response of the RS. It has been found that such electrophysical parameters of the plate can serve as the prototype of the sensing element (SE) for the circular waveguide RS with flat frequency response.
Citation
Zilvinas Kancleris, Gediminas Slekas, Vincas Tamosiunas, and Milda Tamosiuniene, "Resistive Sensor for High Power Microwave Pulse Measurement of Te01 Mode in Circular Waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409
References

1. Dagys, M., Z. Kancleris, R. Simniskis, E. Schamiloglu, and F. J. Agee, "Resistive sensor: Device for high-power microwave pulse measurement," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 64-79, 2001.
doi:10.1109/74.979368

2. Chatterjee, R., Elements of Microwave Engineering, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1986.

3. Tantawi, S. G., "A novel circular TE01-mode bend for ultra-high-power applications," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 12, 1679-1687, 2004.
doi:10.1163/1569393042955144

4. Read, M. E., M. Gilgenbach, R. F. Lucey, K. R. Chu, A. T. Drobot, and V. L. Granatstein, "Spatial and temporial coherence of a 35-GHz gyromonotron using the TE01 circular mode," IEEE Trans. Microwave Theory and Tech., Vol. 28, No. 8, 857-878, 1980.
doi:10.1109/TMTT.1980.1130185

5. Kane, S. Y., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

6. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 1995.

7. Chew, W. C., J. M. Jin, C. C. Lu, E.Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 3, 533-543v, 1997.
doi:10.1109/8.558669

8. Chew, W. C., "A 3D perfectly matched medium from modified Maxwell's equations with streched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304

9. Kancleris, Z., V. Tamosiunas, and M. Tamosiuniene, "Computation of the averaged electric field in the semiconductor obstacle placed in the coaxial line," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 447-460, 2006.
doi:10.1163/156939306776117072

10. Chen, Q. and V. Fusco, "Three dimensional cylindrical coordinate finite difference time domain analysis of curved slot line," 2nd Int. Conf. Computations in Electromag., 323-326, U.K., 1994.
doi:10.1049/cp:19940082

11. Chen, Y., R. Mittra, and P. Harms, "Finite-difference timedomain algorithm for solving Maxwell's equation in rotationally symmetric geometries," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441

12. Dib, N., T. Weller, M. Scardeletti, and M. Imparato, "Analysis of cylindrical transmission lines with the finite-difference timedomain method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 509-512, 1999.
doi:10.1109/22.754886

13. Trakic, A., H.Wang, F. Liu, H. S. Lpez, and S. Crozier, "Analysis of transient eddy currents in MRI using a cylindrical FDTD method," IEEE Trans. Appl. Supercond., Vol. 16, No. 9, 1924, 2006.
doi:10.1109/TASC.2006.874000

14. Liu, F. and S. Crozier, "An FDTD model for calculation of gradient-induced eddy currents in MRI system," IEEE Trans. Appl. Supercond., Vol. 14, No. 9, 1983-1989, 2004.
doi:10.1109/TASC.2004.830609

15. Kancleris, Z., "Handling of singularity in finite-difference time-domain procedure for solving Maxwell's equations in cylindrical coordinate system," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 2, 610-613, 2008.
doi:10.1109/TAP.2007.915478

16. Baskakov, S. I., "Basics of electrodynamics," Sov. Radio, Moscow, 1973(in Russian).

17. Kancleris, Z., G. Slekas, V. Tamosiunas, R. Simniskis, P. Ragulis, and M. Tamosiuniene, "Semiconductor plate interacting with TE01 mode in circular waveguide," Lithuanian J. Phys., Vol. 49, No. 1, 35-43, 2009.
doi:10.3952/lithjphys.49116