1. Dagys, M., Z. Kancleris, R. Simniskis, E. Schamiloglu, and F. J. Agee, "Resistive sensor: Device for high-power microwave pulse measurement," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 64-79, 2001.
doi:10.1109/74.979368 Google Scholar
2. Chatterjee, R., Elements of Microwave Engineering, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1986.
3. Tantawi, S. G., "A novel circular TE01-mode bend for ultra-high-power applications," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 12, 1679-1687, 2004.
doi:10.1163/1569393042955144 Google Scholar
4. Read, M. E., M. Gilgenbach, R. F. Lucey, K. R. Chu, A. T. Drobot, and V. L. Granatstein, "Spatial and temporial coherence of a 35-GHz gyromonotron using the TE01 circular mode," IEEE Trans. Microwave Theory and Tech., Vol. 28, No. 8, 857-878, 1980.
doi:10.1109/TMTT.1980.1130185 Google Scholar
5. Kane, S. Y., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
6. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 1995.
7. Chew, W. C., J. M. Jin, C. C. Lu, E.Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 3, 533-543v, 1997.
doi:10.1109/8.558669 Google Scholar
8. Chew, W. C., "A 3D perfectly matched medium from modified Maxwell's equations with streched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304 Google Scholar
9. Kancleris, Z., V. Tamosiunas, and M. Tamosiuniene, "Computation of the averaged electric field in the semiconductor obstacle placed in the coaxial line," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 447-460, 2006.
doi:10.1163/156939306776117072 Google Scholar
10. Chen, Q. and V. Fusco, "Three dimensional cylindrical coordinate finite difference time domain analysis of curved slot line," 2nd Int. Conf. Computations in Electromag., 323-326, U.K., 1994.
doi:10.1049/cp:19940082 Google Scholar
11. Chen, Y., R. Mittra, and P. Harms, "Finite-difference timedomain algorithm for solving Maxwell's equation in rotationally symmetric geometries," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441 Google Scholar
12. Dib, N., T. Weller, M. Scardeletti, and M. Imparato, "Analysis of cylindrical transmission lines with the finite-difference timedomain method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 509-512, 1999.
doi:10.1109/22.754886 Google Scholar
13. Trakic, A., H.Wang, F. Liu, H. S. Lpez, and S. Crozier, "Analysis of transient eddy currents in MRI using a cylindrical FDTD method," IEEE Trans. Appl. Supercond., Vol. 16, No. 9, 1924, 2006.
doi:10.1109/TASC.2006.874000 Google Scholar
14. Liu, F. and S. Crozier, "An FDTD model for calculation of gradient-induced eddy currents in MRI system," IEEE Trans. Appl. Supercond., Vol. 14, No. 9, 1983-1989, 2004.
doi:10.1109/TASC.2004.830609 Google Scholar
15. Kancleris, Z., "Handling of singularity in finite-difference time-domain procedure for solving Maxwell's equations in cylindrical coordinate system," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 2, 610-613, 2008.
doi:10.1109/TAP.2007.915478 Google Scholar
16. Baskakov, S. I., "Basics of electrodynamics," Sov. Radio, Moscow, 1973(in Russian). Google Scholar
17. Kancleris, Z., G. Slekas, V. Tamosiunas, R. Simniskis, P. Ragulis, and M. Tamosiuniene, "Semiconductor plate interacting with TE01 mode in circular waveguide," Lithuanian J. Phys., Vol. 49, No. 1, 35-43, 2009.
doi:10.3952/lithjphys.49116 Google Scholar