1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Uspekhi , Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
3. Lu, Z., J. A. Murakowski, C. A. Schuetz, S. Shi, G. J. Schneider, and D. W. Prather, "Three-dimensional subwavelength imaging by a photonic-crystal flat lens using negative refraction at microwave frequencies," Phys. Rev. Lett., Vol. 95, 153901(4, 2005. Google Scholar
4. Sheng, Z. and V. Varadan, "Tuning the effective properties of metamaterials by changing the susbstrate," J. Appl. Phys., Vol. 101, 014909-1, 2007.
doi:10.1063/1.2407275 Google Scholar
5. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, 1990.
doi:10.1109/19.52520 Google Scholar
6. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different splitring resonator parameters and designs," New J. Phys., Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168 Google Scholar
7. Aydin, K., K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, "Effect of disorder on magnetic resonance band gap of split-ring resonator structures," Opt. Express, Vol. 12, 5896, 2004.
doi:10.1364/OPEX.12.005896 Google Scholar
8. Zharov, A. A., I. V. Shadrivov, and Y. S. Kivshar, "Nonlinear properties of left handed materials," Phys. Rev. Lett., Vol. 91, 037401, 2003.
doi:10.1103/PhysRevLett.91.037401 Google Scholar
9. Chen, H. T., W. J. Padilla, J. Zide, A. Gossard, A. Taylor, and R. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, 597-600, 2006.
doi:10.1038/nature05343 Google Scholar
10. Logeeswaran, V. J., A. Stameroff, M. Islam, W. Wu, A. Bratkovsky, P. Kuekes, S. Wang, and R. Williams, "Switching between positive and negative permeability by photoconductive coupling for modulation of electromagnetic radiation," Appl. Phys. A, Vol. 87, 209-216, 2007.
doi:10.1007/s00339-007-3897-9 Google Scholar
11. Reynet, O. and O. Acher, "Voltage controlled metamaterial," Appl. Phys. Lett., Vol. 84, 1198, 2004.
doi:10.1063/1.1646731 Google Scholar
12. He, P., P. Parimi, and C. Vittoria, "Tunable negative refractive index metamaterial phase shifter," Elec. Lett., Vol. 43, 2007.
doi:10.1049/el:20072441 Google Scholar
13. Velez, A. and J. Bonache, "Varactor-loaded complementary split ring resonators VLCSRR and their application to tunable metamaterial transmission lines," IEEE Microwave and Wirel. Compon. Lett., Vol. 18, 28-30, 2008.
doi:10.1109/LMWC.2007.911983 Google Scholar
14. Smith, D., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104-1, 2002.
doi:10.1103/PhysRevB.65.195104 Google Scholar
15. Chen, H. T., J. Ohara, A. Azad, A. Taylor, R. Averitt, D. Shrekenhamer, and W. J. Padilla, "Experimental demonstration Experimental demonstration," Nature Photonics, Vol. 2, 295-298, 2008.
doi:10.1038/nphoton.2008.52 Google Scholar
16. Karkkainen, M. K. and P. Ikonen, "Patch antenna with stacked Patch antenna with stacked," Microwave Opt. Technol. Lett., Vol. 46, 554-556, 2005.
doi:10.1002/mop.21048 Google Scholar
17. Oh, S. and L. Shafai, "Artificial magnetic conductor using split ring resonators and its applications to antennas," Microwave Opt. Technol. Lett., Vol. 48, 329-334, 2006.
doi:10.1002/mop.21341 Google Scholar
18. Maslovski, S., P. Ikonen, I. kolmakov, and S. Tretyakov, "Artificial magnetic materials based on the new magnetic particle: Metalsolenoid," Progress In Electromagnetics Research, PIER 54, 61-81, 2005. Google Scholar
19. Katsarakis, N., T. Koschny, and M. Kafesaki, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, 2943-2945, 2004.
doi:10.1063/1.1695439 Google Scholar
20. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
21. Kafesaki, M., T. Koschny, R. Penciu, T. Gundogdu, E. Econonou, and C. Soukoulis, "Left-handed metamaterials: Detailed numerical studies of the transmission properties," J. Opt. A: Pure and Appl. Opt., Vol. 7, S12-S22, 2005.
doi:10.1088/1464-4258/7/2/002 Google Scholar
22. Dudley, D., W. Duncan, and J. Slaughter, "Emerging digital micromirror device DMD applications," Proc. SPIE, Vol., Vol. 4985 , 14-25, 2003.
doi:10.1117/12.480761 Google Scholar
23. Aydin, K. and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys., Vol. 101, 024911-5, 2007.
doi:10.1063/1.2427110 Google Scholar
24. Liu, N., H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, "Three-dimensional photonic metamaterials at optical frequencies," Nature Materials, Vol. 7, 31-37, 2008.
doi:10.1038/nmat2072 Google Scholar
25. Balanis, C., Antenna Theory, Chap. 6, 3rd edition, John Wiley & Sons, 2005.
26. Hand, T. and S. Cummer, "Controllable magnetic metamaterial using digitally addressable split-ring resonator," IEEE Ant. Propag. Lett., to be published. Google Scholar
27. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Micro. Theo. Tech., Vol. 53, 161-173, 2005.
doi:10.1109/TMTT.2004.839927 Google Scholar
28. Chen, H. T., W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, "A metamaterial solid state terahertz phase modulator," Nature Photonics, Vol. 3, 148-151, 2009.
doi:10.1038/nphoton.2009.3 Google Scholar
29. Mirza, I. O., S. Shi, and D. W. Prather, "Phase modulation using dual split ring resonators," Opt. Express, Vol. 17, 5089-5097, 2009.
doi:10.1364/OE.17.005089 Google Scholar