1. Jin, J. M., The Finite Element Method in Electromagnetics, 2nd Ed., John Wiley & Sons, Inc., 2002.
2. Bedrosian, G., "High-performance computing for finite element methods in low-frequency electromagnetics," Progress In Electromagnetics Research, Vol. 07, 57-110, 1993. Google Scholar
3. Jiao, D. and S. Chakravarty, "A layered finite element method for electromagnetic analysis of large-scale high-frequency integrated circuits," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 422-432, 2007.
doi:10.1109/TAP.2006.889847 Google Scholar
4. Zhou, X. and G. W. Pan, "Application of physical spline finite element method (PSFEM) to fullwave analysis of waveguides," Progress In Electromagnetics Research, Vol. 60, 19-41, 2006.
doi:10.2528/PIER05081102 Google Scholar
5. Mittra, R. and O. Ramahi, "Absorbing boundary conditions for the direct solution of partial differential equations arising in elec-tromagnetic scattering problems," Progress In Electromagnetics Research, Vol. 02, 133-173, 1990. Google Scholar
6. Hadi, M. F., "Wide-angle absorbing boundary conditions for low and high-order FDTD algorithms," Applied Computational Electromagnetics Society Journal, Vol. 24, No. 1, 9-15, 2009. Google Scholar
7. Basu, U., "Explicit finite element perfectly matched layer for transient three-dimensional elastic waves," Intertional Journal for Numerical Methods in Engineering, Vol. 77, No. 2, 151-176, 2009.
doi:10.1002/nme.2397 Google Scholar
8. Movahhedi, M. and A. Abdipour, "Complex frequency shifted-perfectly matched layer for the finite-element time-domain method," Eu-International Journal of Electronics and Communications, Vol. 63, No. 1, 72-77, 2009.
doi:10.1016/j.aeue.2007.10.001 Google Scholar
9. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3D perfectly matched layers used for truncation of the fdtd computations," Progress In Electromagnetics Research, Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002 Google Scholar
10. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
11. Harrington, R. F., Field Computation by Moment Methods, Krieger Publishing Company, 1983.
12. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105 Google Scholar
13. Zhang, Y., J. Porter, M. Taylor, and T. K. Sarkar, "Solving challenging electromagnetic problems using MoM and a parallel out-of-core solver on high performance clusters," IEEE Antennas and Propagation Society International Symposium, 2858-2861, 2008.
14. Song, J. M. and W. C. Chew, "Multilevel fast-multipole algorithm for solving combined field integral equations of electromagnetic scattering," Microwave and Optical Tech. Lett., Vol. 10, 14-19, 1995.
doi:10.1002/mop.4650100107 Google Scholar
15. Cui, T. J., W. C. Chew, G. Chen, and J. M. Song, "Efficient MLFMA, RPFMA, and FAFFA algorithms for EM scattering by very large structures," IEEE Trans. Antennas Propagat., Vol. 52, 759-770, 2004.
doi:10.1109/TAP.2004.825491 Google Scholar
16. Wang, C. F., L. W. Li, P. S. Kooi, and M. S. Leong, "Efficient capacitance computation for three-dimensional structures based on adaptive integral method," Progress In Electromagnetics Research, Vol. 30, 33-46, 2001.
doi:10.2528/PIER00031302 Google Scholar
17. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, 1995.
18. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 12, 631-644, 1992. Google Scholar
19. Zunoubi, M. R. and A. A. Kishk, "A combined Bi-Cgstab (1) and wavelet transform method for EM problems using method of moments," Progress In Electromagnetics Research, Vol. 52, 205-224, 2005.
doi:10.2528/PIER04080903 Google Scholar
20. Sheng, X. Q. and Z. Peng, "Further cognition of hybrid FE/BI/MLFMA-investigation of the hybrid computing technique for scattering by large complex targets," Acta Electronica Sinica, Vol. 34, 93-98, 2006 (in Chinese). Google Scholar
21. Liu, J. and J. M. Jin, "A highly effective preconditioner for solving the finite element-boundary integral matrix equation of 3-D scattering," IEEE Trans. Antennas Propagat., Vol. 50, No. 9, 1212-1221, 2002.
doi:10.1109/TAP.2002.801377 Google Scholar
22. Irons, B. M., "A frontal method solution program for finite element analysis," Intertional Journal for Numerical Methods in Engineering, Vol. 2, 5-32, 1970.
doi:10.1002/nme.1620020104 Google Scholar
23. Rozenfeld, P., "The electromagnetic theory of three-dimensional inhomogeneous lenses," IEEE Trans. Antennas Propgat., Vol. 24, 365-370, 1976.
doi:10.1109/TAP.1976.1141337 Google Scholar
24. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. Antennas Propagat., Vol. 32, No. 8, 797-806, 1984.
doi:10.1109/TAP.1984.1143430 Google Scholar