1. Engheta, N. and R. W. Ziolkowski, "Introduction, history and fundamental theories of double-negative (DNG) metamaterials," Metamaterials: Physics and Engineering Explorations, Chap. 1, 5-41, IEEE Press, John Wiley & Sons, Inc., Jun. 2006. Google Scholar
2. Engheta, N., A. Alu, R. W. Ziolkowski, and A. Erontok, "Fundamentals of waveguides and antenna applications involving double-negative (DNG) and single-negative (SNG) metamaterials," Metamaterials: Physics and Engineering Explorations, Chap. 2, 43-85, IEEE Press, John Wiley & Sons, Inc., Jun. 2006. Google Scholar
3. Ding, W., L. Chen, and C. H. Liang, "Characteristics of electromagnetic wave propagation in biaxial anisotropic left-handed materials," Progress In Electromagnetics Research, Vol. 70, 37-52, 2007.
doi:10.2528/PIER07011001 Google Scholar
4. Grzegorczyk, T. M., X. Chen, J. Pacheco, J. Chen, B. I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 83-113, 2005.
doi:10.2528/PIER04040901 Google Scholar
5. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Low frequency plasmons in thin-wire structures," J. Phys. Condens. Matter, Vol. 10, No. 22, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
6. Hudlicka, M., J. Machac, and I. S. Nefedov, "A triple wire medium as an isotropic negative permittivity metamaterial," Progress In Electromagnetics Research, Vol. 65, 233-246, 2006.
doi:10.2528/PIER06102703 Google Scholar
7. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, Nov. 1999.
doi:10.1109/22.798002 Google Scholar
8. Xi, S., H. Chen, B.-I. Wu, and J. A. Kong, "Experimental confirmation of guidance properties using planar anisotropic left-handed metamaterial slabs based on S-Ring Resonators," Progress In Electromagnetics Research, Vol. 84, 279-287, 2008.
doi:10.2528/PIER08062105 Google Scholar
9. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104 Google Scholar
10. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, Apr. 2001.
doi:10.1126/science.1058847 Google Scholar
11. Hwang, R. B., "Relations between the reflectance and band structure of 2D metallo-dielectric electromagnetic crystals," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 6, 1454-1464, Jun. 2004.
doi:10.1109/TAP.2004.829853 Google Scholar
12. Li, C., Q. Sui, and F. Li, "Complex guided wave solution of grounded dielectric slab made of metamaterials," Progress In Electromagnetics Research, Vol. 51, 187-195, 2005.
doi:10.2528/PIER04011203 Google Scholar
13. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, No. 1, 016608, 2004.
doi:10.1103/PhysRevE.70.016608 Google Scholar
14. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, Nov. 2002.
doi:10.1103/PhysRevLett.89.213902 Google Scholar
15. Weng, Z.-B., Y.-C. Jiao, G. Zhao, and F.-S. Zhang, "Design and experiment of one dimension and two dimension metamaterial structures for directive emission," Progress In Electromagnetics Research, Vol. 70, 199-209, 2007.
doi:10.2528/PIER07010301 Google Scholar
16. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
17. Liang, L., B. Li, S. H. Liu, and C. H. Liang, "A study of using the double negative structure to enhance the gain of rectangular waveguide antenna arrays," Progress In Electromagnetics Research, Vol. 65, 275-286, 2006.
doi:10.2528/PIER06103102 Google Scholar
18. Li, B., B. Wu, and C.-H. Liang, "Study on high gain circular waveguide array antenna with metamaterial structure," Progress In Electromagnetics Research, Vol. 60, 207-219, 2006.
doi:10.2528/PIER05121101 Google Scholar
19. Beruete, M., I. Campillo, J. E. Rodriguez-Seco, E. Perea, M. Navarro-Cia, I. J. Nunez-Manrique, and M. Sorolla, "Enhanced gain by double-periodic stacked subwavelength hole array," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 831-833, Dec. 2007.
doi:10.1109/LMWC.2007.910470 Google Scholar
20. Franson, S. J. and R. W. Ziolkowski, "Gigabit per second data transfer at 60 GHz in high gain grid antennas," IEEE AP-S, Jul. 2008.
21. Yuehe, G. and K. P. Esselle, "High-gain, low-profile EBG resonator antennas with very thin metamaterial superstrates," IEEE AP-S, Jul. 2008.
22. Lin, H.-H., C.-Y. Wu, and S.-H. Yeh, "Metamaterial enhanced high gain antenna for WiMAX application," IEEE AP-S, Oct. 2007.
23. Vardaxoglou, Y. and F. Capolino, "Review of highly-directive flat-plate antenna technology with metasurfaces and metamaterials," IEEE Proceedings of the 36th European Microwave Conference, 963-966, Sept. 2006.
24. Russo, P., R. Rudduck, and L. Peters Jr., "A method for computing E-plane patterns of horn antennas," IEEE Trans. Antennas and Propagation, Vol. 13, No. 2, 219-224, Mar. 1965.
doi:10.1109/TAP.1965.1138418 Google Scholar
25. Safaai-Jazi, A. and E. Jull, "A short horn with high E-plane directivity," IEEE Trans. Antennas and Propagation, Vol. 25, No. 6, 854-859, Nov. 1977.
doi:10.1109/TAP.1977.1141688 Google Scholar
26. Yu, J., R. Rudduck, and L. Peters Jr., "Comprehensive analysis for E-plane of horn antennas by edge diffraction theory," IEEE Trans. Antennas and Propagation, Vol. 14, No. 2, 138-149, Mar. 1966.
doi:10.1109/TAP.1966.1138651 Google Scholar
27. Rhodes, D. R., "An experimental investigation of the radiation patterns of electromagnetic horn antennas," Proceedings of the IRE, Vol. 36, No. 9, 1101-1105, Sept. 1948.
28. Jull, E., "Errors in the predicted gain of pyramidal horns," IEEE Trans. Antennas and Propagation, Vol. 21, No. 1, 25-31, Jan. 1973.
doi:10.1109/TAP.1973.1140408 Google Scholar
29. Jull, E., "Reflection from the aperture of a long E-plane sectoral horn," IEEE Trans. Antennas and Propagation, Vol. 20, No. 1, 62-68, Jan. 1972.
doi:10.1109/TAP.1972.1140137 Google Scholar
30. Liu, K., C. A. Balanis, C. R. Birtcher, and G. C. Barber, "Analysis of pyramidal horn antennas using moment methods," IEEE Trans. Antennas and Propagation, Vol. 41, No. 10, 1379-1389, Oct. 1993.
doi:10.1109/8.247778 Google Scholar
31. Gupta, R. C., "Analysis of radiation patterns of compound boxhorn antenna," Progress In Electromagnetics Research, Vol. 76, 31-34, 2007.
doi:10.2528/PIER07060301 Google Scholar
32. Mallahzadeh, A. R. and F. Karshenas, "Modified TEM horn antenna for broadband applications," Progress In Electromagnetics Research, Vol. 90, 105-119, 2009.
doi:10.2528/PIER08123106 Google Scholar