Vol. 94
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-06
A Trust Region Subproblem for 3D Electrical Impedance Tomography Inverse Problem Using Experimental Data
By
Progress In Electromagnetics Research, Vol. 94, 19-32, 2009
Abstract
Image reconstruction in electrical impedance tomography (EIT) is an ill-posed nonlinear inverse problem. Regularization methods are needed to solve this problem. The results of the ill-posed EIT problem strongly depends on noise level in measured data as well as regularization parameter. In this paper we present trust region subproblem (TRS), with the use of Lcurve maximum curvature criteria to find a regularization parameter. Currently Krylov subspace methods especially conjugate gradient least squares (CGLS) are used for large scale 3D problem. CGLS is an efficient technique when the norm of measured noise is exactly known. This paper demonstrates that CGLS and TRS converge to the same point on the L-curve with the same noise level. TRS can be implemented efficiently for large scale inverse EIT problem as CGLS with no need a priori knowledge of the noise level.
Citation
Mehran Goharian Manuchehr Soleimani Gerald R. Moran , "A Trust Region Subproblem for 3D Electrical Impedance Tomography Inverse Problem Using Experimental Data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003
http://www.jpier.org/PIER/pier.php?paper=09052003
References

1. Eldén, L., "Algorithms for the regularization of ill-conditioned least squares problems," BIT, Vol. 17, 134-145, 1977.
doi:10.1007/BF01932285

2. Björck, A., "Numerical methods for least squares problems," SIAM, Philadelphia, 1996.

3. Rojas, M., "A large-scale trust-region approach to the regularization of discrete ill-posed problems,", Ph.D. Thesis, Technical Report TR98-19, Department of Computational and Applied Mathematics, Rice University, Houston, 1998.

4. Grodzevich, O., "Regularization using a parameterized Trust-Region subproblem,", M.Sc. Thesis, Department of Combinatorics and Optimization, University of Waterloo, Canada, 2004.

5. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Rev., Vol. 34, No. 2, 561-580, 1992.
doi:10.1137/1034115

6. Sorensen, D. C., "Minimization of a large-scale quadratic function subject to a spherical constraint," SIAM Journal on Optimization, Vol. 7, No. 1, 141-161, 1997.
doi:10.1137/S1052623494274374

7. Stern, R. J. and W. Hlkowicz, "Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations," SIAM Journal on Optimization, Vol. 5, No. 2, 286-313, 1995.
doi:10.1137/0805016

8. Boone, K., D. Barber, and B. Brown, "Imaging with electricity: Report of the european concerted action on impedance tomography," Journal of Medical Engineering & Technology, Vol. 21, No. 4, 201-232, 1997.

9. Metherall, P., D. C. Barber, R. H. Smallwood, and B. H. Brown, "Three-dimensional electrical impedance tomography," Nature, Vol. 380, No. 6574, 509-512, 1996.
doi:10.1038/380509a0

10. Vauhkonen, M., "Electrical impedance tomography and prior information,", Thesis, Univeristy of Kuopio, 1997.

11. Goharian, M., G. R. Moran, K. Wilson, C. Seymour, A. Jegatheesan, M. Hill, R. T. Thompson, and G. Campbe, "Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation," Nucl. Instr. and Meth. B, 2007.

12. Mori, Y., H. Tokura, and M. Yoshikawa, "Properties of hydrogels synthesized by freezing and thawing aqueous polyvinyl alcohol solutions and their applications," Journal of Materials Science, Vol. 32, No. 2, 491-496, 1997.
doi:10.1023/A:1018586307534

13. Surry, K. J. M., H. J. B. Austin, A. Fenster, and T. M. Peters, "Poly (vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging," Physics in Medicine and Biology, Vol. 49, No. 24, 5529-5546, 2004.
doi:10.1088/0031-9155/49/24/009

14. Goharian, M., A. Jegatheesan, and G. R. Moran, "Dogleg trustregion application in electrical impedance tomography," Physiol. Meas., Vol. 28, 555-572, 2007.
doi:10.1088/0967-3334/28/5/009

15. Soleimani, M., C. N. Mitchell, R. Banasiak, R. Wajman, and A. Adler, "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research, Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

16. Soleimani, M., "Simultaneous reconstruction of permeability and conductivity in magnetic induction tomography," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 785-798, 2009.
doi:10.1163/156939309788019822

17. Zacharopoulos, A. and S. Arridge, "3D shape reconstruction in optical tomography using spherical harmonics and BEM," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1827-1836, 2006.
doi:10.1163/156939306779292165

18. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701

19. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11--12, 1565-1574, 2008.
doi:10.1163/156939308786390021

20. Giamalaki, M. I., I. S. Karanasiou, and N. K. Uzunoglu, "Electromagnetic analysis of a non invasive microwave radiometry imaging system emphasizing on the focusing sensitivity optimization," Progress In Electromagnetics Research, Vol. 90, 385-407, 2009.
doi:10.2528/PIER09010803

21. Polydorides, N., "Linearization error in electrical impedance tomography," Progress In Electromagnetics Research, Vol. 93, 323-337, 2009.
doi:10.2528/PIER09052503