1. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0 Google Scholar
2. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electronic and electromagnetic properties of nanotubes," Phys. Rev. B, Vol., Vol. 57, 9485, 1998.
doi:10.1103/PhysRevB.57.9485 Google Scholar
3. Slepyan, G. Y., S. A. Maksimenko, A. Lakhtakia, O. M. Yevtushenko, and A. V. Gusakov, "Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation," Phys. Rev. B, Vol. 60, 17136 -17149, 1999.
doi:10.1103/PhysRevB.60.17136 Google Scholar
4. Miyamoto, Y., A. Rubio, S. G. Louie, and M. L. Cohen, "Self-inductance of chiral conducting nanotubes," Phys. Rev. B, Vol. 60 , 13885, 1999.
doi:10.1103/PhysRevB.60.13885 Google Scholar
5. Mikki, S. M. and A. A. Kishk, "A symmetry-based formalism for the electrodynamics of nanotubes," Progress In Electromagnetics Research, PIER 86, 111-134, 2008. Google Scholar
6. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antenna," IEEE Trans. Antennas and Propagation, Vol. 53, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865 Google Scholar
7. Burke, P. J., "Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 1, 129-144, 2002.
doi:10.1109/TNANO.2002.806823 Google Scholar
8. Burke, P. J., "Corrections to Luttinger liquid theory as a model of Gigahertz electrical properties of carbon nanotubes," IEEE Trans Nanotechnology, Vol. 3, 331, 2004. Google Scholar
9. Burke, P. J., "An RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 2, 55-58, 2003.
doi:10.1109/TNANO.2003.808503 Google Scholar
10. Burke, P. J., "Corrections to an RF circuit model for carbon nanotubes," IEEE Trans. Nanotechnology, Vol. 3, No. 331, 2004. Google Scholar
11. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part II: A transmission line model," IEEE Workshop on Signal Propagation on Interconnects, 185-188, 2006.
doi:10.1109/SPI.2006.289216 Google Scholar
12. Chiariello, A. G., A. Maffucci, G. Miano, F. Villone, and W. Zamboni, "Metallic carbon nanotube interconnects, Part I: A fluid model and a 3D integral formulation," IEEE Workshop on Signal Propagation on Interconnects, 181-184, 2006.
doi:10.1109/SPI.2006.289215 Google Scholar
13. Maffucci, A. and G. Miano, "Electromagnetic and circuital modeling of carbon nanotube interconnects," 2nd Electronics System-integration Technology Conference, 1051-1056, 2006. Google Scholar
14. Miano, G., A. Maffucci, F. Villone, and W. Zamboni, "Frequency-domain modelling of nanoscale electromagnetic devices using a fluid model and an integral formulation," International Conference on Electromagnetics in Advanced Applications, 233-236, 2007.
doi:10.1109/ICEAA.2007.4387280 Google Scholar
15. Harrison, C. W., "Monopole with inductive loading," IEEE Trans. on Antennas and Propagation, Vol. 11, 394-400, 1963.
doi:10.1109/TAP.1963.1138059 Google Scholar
16. Hanson, G. W., "Current on an infinitely-long carbon nanotube antenna excited by a gap generator," EEE Trans. Antennas and Propagation, Vol. 54, 76-81, 2006.
doi:10.1109/TAP.2005.861550 Google Scholar
17. Hanson, G. W., "Radiation efficiency of nanoradius dipole antennas in the microwave and far-infrared regime," IEEE Antennas and Propagation Magazine, Vol. 50, 66-77, 2008.
doi:10.1109/MAP.2008.4563565 Google Scholar
18. Burke, P. J., S. Li, and Z. Yu, "Quantitative theory of nanowire and nanotube antenna performance," IEEE Trans. Nanotechnology, Vol. 5, 314-334, 2006.
doi:10.1109/TNANO.2006.877430 Google Scholar
19. Huang, Y., W.-Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Trans. Nanotechnology, Vol. 7, 331-337, 2008.
doi:10.1109/TNANO.2007.915017 Google Scholar
20. Slepyan, G. Y., M. V. Shuba, A. M. Nemilentsau, and S. A. Maksimenko, "Electromagnetic theory of nanodimentional antennas for terahertz, infrared and optical regimes," 12th International Conference on Mathematical Methods in Electromagnetic Theory, 118-123, 2008.
doi:10.1109/MMET.2008.4580910 Google Scholar
21. Fichtner, N., X. Zhou, and P. Russer, "Investigation of carbon nanotube antennas using thin wire integral equations," Adv. Radio Sci., Vol. 6, 209-211, 2008. Google Scholar
22. Maffucci, A., G. Miano, G. Rubinacci, A. Tamburrino, and F. Villone, "Plasmonic, carbon nanotube and conventional nano-interconnects: A comparison of propagation properties," 12th IEEE Workshop on Signal Propagation on Interconnects, SPI 2008. Google Scholar