Vol. 94
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-07-15
The Origin of Electromagnetic Resonances in Three-Dimensional Photonic Fractals
By
Progress In Electromagnetics Research, Vol. 94, 153-173, 2009
Abstract
After a report on strange electromagnetic resonances emerging in an isotropic paraelectric Menger sponge (MS) now known as a photonic fractal, vigorous studies began to reveal their properties. However, the mechanics of how the resonances occur is still unknown. This report focuses on the findings that the resonances can be perturbation-theoretically identified as those originally occurring in an isolated dielectric cube, and that they arise within band gaps and uncouple with Bloch modes for a certain multiperiodic lattice. This interpretation is justified by the fact that the MS can be considered as a cube embedded in the lattice rather than the outcome of conventional recursive fractal structuring operations. An experimental formula for resonance conditions already reported can be derived from this interpretation.
Citation
Ushio Sangawa, "The Origin of Electromagnetic Resonances in Three-Dimensional Photonic Fractals," Progress In Electromagnetics Research, Vol. 94, 153-173, 2009.
doi:10.2528/PIER09062203
References

1. Feder, J., Fractals, Plenum Press, New York, 1988.

2. Takeda, M. W., S. Kirihara, Y. Miyamoto, K. Sakoda, and K. Honda, "Localization of electromagnetic waves in three-dimensional fractal cavities," Phys. Rev. Lett., Vol. 92, No. 093902, 2004.

3. Kirihara, S., Y. Miyamoto, M. W. Takeda, K. Honda, and K. Sakoda, "Strong localization of electromagnetic wave in ceramic/epoxy photonic fractals with Menger-sponge structure," Proc. on Ceramic Engineering and Science, Vol. 26, No. 3, 367-372, 2005.
doi:10.1002/9780470291238.ch41

4. Semouchkina, E., Y. Miyamoto, S. Kirihara, G. Semouchkin, and M. Lanagan, "Analysis of electromagnetic response of 3-D dielectric fractals of Menger sponge type," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 6, 1305-1313, 2007.
doi:10.1109/TMTT.2007.897816

5. Miyamoto, Y., H. Kanaoka, and S. Kirihara, "Terahertz wave localization at a three-dimensional ceramic fractal cavity in photonic crystals," J. Appl. Phys., Vol. 103, No. 10, 103106.1-103106.5, 2008.
doi:10.1063/1.2924327

6. Mori, A., S. Kirihara, Y. Miyamoto, M. W. Takeda, K. Honda, and K. Sakoda, "Integration of ceramic/epoxy photonic fractals with localization of electromagnetic waves," Proc. on Ceramic Engineering and Science, Vol. 26, No. 3, 361-366, 2005.
doi:10.1002/9780470291238.ch40

7. Sakoda, K., "Scaling property and symmetry-dependent escape time of the localized electromagnetic modes in the metallic Menger sponge fractal," Laser Physics, Vol. 18, No. 12, 1378-1385, 2008.
doi:10.1134/S1054660X08120025

8. Sakoda, K., "Electromagnetic eigenmodes of a three-dimensional photonic fractal," Phys. Rev. B, Vol. 72, No. 18, 184201, 2005.
doi:10.1103/PhysRevB.72.184201

9. Sangawa, U., "Non-resonant electromagnetic scattering properties of Menger's sponge composed of isotropic paraelectric material," IEICE Trans. Electron., Vol. E90-C, No. 2, 484-491, 2007.
doi:10.1093/ietele/e90-c.2.484

10. Sangawa, U., "Resonance analysis of multilayered filters with triadic Cantor-type one-dimensional quasi-fractal structures," IEICE Trans. Electron., Vol. E88-C, No. 10, 1981-1991, 2005.
doi:10.1093/ietele/e88-c.10.1981

11. Itoh, T. and C. Chang, "Resonant characteristics of dielectric resonators for millimeter-wave integrated circuits," Proc. IEEE Microw. Theory Tech. Soc. Int. Symp., Vol. 78, No. 1, 121-123, 1978.

12. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," Bell Syst. Tech. J., Vol. 48, 2071-2102, 1969.

13. Zhang, K. and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics, 2nd editon, 348-352, Springer, New York, 2007.

14. Noda, S., A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, Vol. 407, 608-610, 2000.
doi:10.1038/35036532

15. Itoh, T., "Spectral domain immitance approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 7, 733-736, 1980.
doi:10.1109/TMTT.1980.1130158

16. Arrighetti, W. and G. Gerosa, "Spectral analysis of Serpinskij carpet-like prefractal waveguides and resonators," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 1, 30-32, 2005.
doi:10.1109/LMWC.2004.840972