1. Chen, L. F., C. K. Ong, C. P. Neo, et al. Microwave Electronics: Measurement and Materials Characterization, John Wiley & Sons, 2004.
2. He, X., Z. X. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.2528/PIERL08011501 Google Scholar
3. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 4, 555-562, 2008.
doi:10.1163/156939308784150272 Google Scholar
4. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, and K. H. Awadalla, "Microstrip antenna with corrugated ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 2, 259-278, 2008.
doi:10.2528/PIERB07112702 Google Scholar
5. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
6. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007. Google Scholar
7. Zainud-Deen, S. H., M. E. S. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.2528/PIERB08010203 Google Scholar
8. Capineri, L., D. J. Daniels, P. Falorni, O. L. Lopera, and C. G. Windsor, "Estimation of relative permittivity of shallow soils by using the ground penetrating radar response from different buried targets," Progress In Electromagnetics Research Letters, Vol. 2, 63-71, 2008.
doi:10.2528/PIERL07122803 Google Scholar
9. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.2528/PIERB08082701 Google Scholar
10. Rubinger, C. P. L. and L. C. Costa, "Building a resonant cavity for the measurement of microwave dielectric permittivity of high loss materials," Microwave Opt. Tech. Lett., Vol. 49, 1687-1690, 2007.
doi:10.1002/mop.22506 Google Scholar
11. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar
12. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, PIER 75, 239-252, 2007. Google Scholar
13. Hasar, U. C., "Thickness-independent complex permittivity determination of partially ¯lled thin dielectric materials into rectangular waveguides," Progress In Electromagnetics Research, PIER 93, 189-203, 2009. Google Scholar
14. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, PIER 93, 161-176, 2009. Google Scholar
15. Hasar, U. C., "A microwave method for noniterative constitutive parameters determination of thin low-loss or lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 1595-1601, Jun. 2009.
doi:10.1109/TMTT.2009.2020779 Google Scholar
16. Hasar, U. C. and O. Simsek, "A calibration-independent microwave method for position-insensitive and nonsingular dielectric measurements of solid materials," Journal of Phys. D: Appl. Phys., Vol. 42, 075403-075412, Mar. 2009.
doi:10.1088/0022-3727/42/7/075403 Google Scholar
17. Baker-Jarvis, J., M. D. Janezic, P. D. Domich, and R. G. Geyer, "Analysis of an open-ended coaxial probe with lift-off for nondestructive testing," IEEE Trans. Microw. Theory Tech., Vol. 43, 711-718, 1994. Google Scholar
18. Stuchly, S. S. and M. A. Stuchly, "Coaxial line reflection method for measuring dielectric properties at radio and microwave frequencies, a review," IEEE Trans. Instrum. Meas., Vol. 29, 1640-1648, 1999. Google Scholar
19. Teodoridis, V., T. Sphicopoulos, and F. E. Gardiol, "The reflection from an open-ended rectangular waveguide terminated by a layered dielectric medium," IEEE Trans. Microw. Theory Tech., Vol. 33, 359-366, 1985.
doi:10.1109/TMTT.1985.1133006 Google Scholar
20. Park, M. Y. and H. J. Eom, "Reflection coefficient of a flanged rectangular waveguide radiating into a dielectric slab," Microw. Opt. Technol. Lett., Vol. 35, 401-404, 2002.
doi:10.1002/mop.10619 Google Scholar
21. Bois, K. J., A. D. Benally, and R. Zoughi, "Multimode solution for the reflection properties of an open-ended rectangular waveguide radiating into a dielectric half-space: The forward and inverse problems," IEEE Trans. Instrum. Meas., Vol. 48, 1131-1140, 1999.
doi:10.1109/19.816127 Google Scholar
22. Saleh, W. and N. Qaddoumi, "Potential of near-field microwave imaging in breast cancer detection utilizing tapered rectangular waveguide probes," Computer and Electrical Engineering, Vol. 35, 587-593, 2009.
doi:10.1016/j.compeleceng.2008.08.005 Google Scholar
23. Chang, C.-W., K.-M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at X-band frequencies using a waveguide probe system," IEEE Trans. Instrum. Meas., Vol. 46, 1084-1092, 1997.
doi:10.1109/19.676717 Google Scholar
24. Trabelsi, S. and S. O. Nelson, "Nondestructive sensing of physical properties of granular materials by microwave permittivity measurement," IEEE Trans. Instrum. Meas., Vol. 55, 953-963, 2006.
doi:10.1109/TIM.2006.873787 Google Scholar
25. Hasar, U. C., "Non-destructive testing of hardened cement specimens at microwave frequencies using a simple free-space method," NDT & E Int., Vol. 42, 550-557, 2009.
doi:10.1016/j.ndteint.2009.04.004 Google Scholar
26. Hasar, U. C., "A microcontroller-based microwave free-space measurement system for permittivity determination of lossy liquid materials," Rev. Sci. Instrum., Vol. 80, 056103-1-056103-3, 2009. Google Scholar
27. Zoughi, R., Microwave Non-destructive Testing and Evaluation, Kluwer Academic Publishers, 2000.
28. Aydin, A. C., A. Arslan, and R. Gul, "Mesoscale simulation of cement based materials' time-dependent behavior," Computational Materials Science, Vol. 41, 20-26, 2007.
doi:10.1016/j.commatsci.2007.02.012 Google Scholar
29. Bois, K. J., A. D. Benally, P. S. Nowak, and R. Zoughi, "Curestate monitoring and water-to-cement ratio determination of fresh Portland cement-based materials using near-field microwave techniques," IEEE Trans. Instrum. Meas., Vol. 47, 628-637, 1998.
doi:10.1109/19.744313 Google Scholar
30. Neville, A. M., Properties of Concrete, Longman Group, London, UK, 1996.
31. Malhotra, V. M. and N. J. Carino (eds.), Handbook on Nondestructive Testing of Concrete, CRC Press, Boca Raton, FL, 2004.
32. Cuinas, I. and M. G. Sanchez, "Building material characterization from complex transmittivity measurements at 5.8 GHz," IEEE Trans. Antennas Propagat., Vol. 48, 1269-1271, 2000. Google Scholar
33. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
34. Oppenheim, A. V., A. S. Willsky, and S. Hamid, Signals and Systems, Prentice Hall, 1997.
35. Hasar, U. C., "Two novel amplitude-only methods for complex permittivity determination of medium- and low-loss materials," Meas. Sci. Techol., Vol. 19, 055706-055715, 2008.
doi:10.1088/0957-0233/19/5/055706 Google Scholar
36. Hasar, U. C., "Free-space non-destructive characterization of young mortar samples," J. Mater. Civ. Eng., Vol. 19, 674-682, 2007.
doi:10.1061/(ASCE)0899-1561(2007)19:8(674) Google Scholar
37. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Permittivity determination of liquid materials using waveguide measurements for industrial applications," IET Microw. Antennas Propag., Vol. 4, 10.1049/iet-map.2008.0197. Google Scholar
38. Hasar, U. C., C. R. Westgate, and M. Ertugrul, "Noniterative permittivity extraction of lossy liquid materials from reflection asymmetric amplitude-only microwave measurements," IEEE Microw. Wireless Compon. Lett., Vol. 19, 419-421, 2009.
doi:10.1109/LMWC.2009.2020045 Google Scholar
39. Bois, K. J., L. F. Handjojo, A. D. Benally, K. Mubarak, and R. Zoughi, "Dielectric plug-loaded two-port transmission line measurement technique for dielectric property characterization of granular and liquid material," IEEE Trans. Instrum. Meas., Vol. 48, 1141-1148, 1999.
doi:10.1109/19.816128 Google Scholar
40. Chin, G. Y. and E. A. Mechtly, "Properties of materials," Radio, Electronics, Computer, and Communications, E. C. Jordan (ed.), 4-20-4-23, Howard W. Sams & Co., Indianapolis, IN, 1986. Google Scholar
41. Hasar, U. C. and C. R. Westgate, "A broadband and stable method for unique complex permittivity determination of low-loss materials," IEEE Trans. Microw. Theory Tech., Vol. 57, 471-477, 2009.
doi:10.1109/TMTT.2008.2011242 Google Scholar
42. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Microw. Theory and Tech., Vol. 27, 987-993, 1979.
doi:10.1109/TMTT.1979.1129778 Google Scholar