1. R. F., Harrington, Field Computation by Moment Methods, Macmillan, 1968.
2. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, 409-418, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
3. Glisson, W. and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Trans. Antennas Propagat., Vol. 28, 593-603, Sep. 1980.
doi:10.1109/TAP.1980.1142390 Google Scholar
4. Notaros, M., B. D. Popovic, J. P. Weem, et al. "Effcient large-domain MoM solutions to electrically large practical EM problems," IEEE Trans. Microw. Theory and Techniques, Vol. 49, 151-159, Jan. 2001.
doi:10.1109/22.899977 Google Scholar
5. Djordjevic, M. and B. M. Notaros, "Double higher order method of moments for surface integral equation modeling of metallic and dielectric antennas and scatterers," IEEE Trans. Antennas Propagat., Vol. 52, 2118-2129, Aug. 2004.
doi:10.1109/TAP.2004.833175 Google Scholar
6. Djordjevic, M. and B. M. Notaros, "Higher-order hierarchical basis functions with improved orthogonality properties for moment-method modeling of metallic and dielectric microwave structures," Microw. Opt. Technol. Lett., Vol. 37, 83-88, Apr. 2003.
doi:10.1002/mop.10831 Google Scholar
7. Jorgensen, E., J. L. Volakis, P. Meincke, and O. Breinbjerg, "Higher order hierarchical legendre basis functions for electro-magnetic modeling," IEEE Trans. Antennas Propagat., Vol. 52, 2985-2995, Nov. 2004.
doi:10.1109/TAP.2004.835279 Google Scholar
8. Vergeest, J. S. M., "CAD surface data exchange using STEP," Computer-Aided Design, Vol. 23, 269-281, May 1991.
doi:10.1016/0010-4485(91)90067-7 Google Scholar
9. Perez, J. and M. F. Catedra, "RCS of electrically large targets modeled with NURBS surfaces," Electronics Letters, Vol. 28, 1119-1121, Jun. 1992.
doi:10.1049/el:19920706 Google Scholar
10. Perez, J. and M. F. Catedra, "Application of physical optics to the RCS computation of bodies modeled with NURBS surfaces," IEEE Trans. Antennas Propagat., Vol. 42, 1404-1411, Oct. 1994.
doi:10.1109/8.320747 Google Scholar
11. Domingo, M., F. Rivas, J. Perez, et al. "Computation of the RCS of complex bodies modeled using NURBS surfaces," IEEE Antennas and Propagat. Magazine, Vol. 37, 36-47, Jun. 1995.
doi:10.1109/74.482030 Google Scholar
12. Perez, J., J. A. Saiz, O. M. Conde, et al. "Analysis of antennas on board arbitrary structures modeled by NURBS surfaces," IEEE Trans. Antennas Propagat., Vol. 45, 1045-1053, Jun. 1997.
doi:10.1109/8.585754 Google Scholar
13. Wang, N., C. H. Liang, and H. B. Yuan, "Calculation of pattern in UTD method based on NURBS modeling with the source on surface," Opt. Technol. Lett. , Vol. 49, 2492-2498, Oct. 2007. Google Scholar
14. Sefi , S., "Ray tracing tools for high frequency electromagnetics simulations,", Licentiate thesis, Royal Institute of Technology of Stockholm, Sweden, May 2003. Google Scholar
15. Chen, M., Y. Zhang, X. W. Zhao, and C. H. Liang, "Analysis of antenna around nurbs surface with hybrid MoM-PO techniqu ," IEEE Trans. Antennas Propagat., Vol. 55, 407-413, Feb. 2007.
doi:10.1109/TAP.2006.889814 Google Scholar
16. Valle, L., F. Rivas, and M. F. Catedra, "Combining the moment method with geometrical modeling by NURBS surfaces and Bezier patches," IEEE Trans. Antennas Propagat., Vol. 42, 373-381, Mar. 1994.
doi:10.1109/8.280724 Google Scholar
17. Delgado, C., M. F. Catedra, and R. Mittra, "Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches," IEEE Trans. Antennas Propagat., Vol. 56, 784-791, Mar. 2008.
doi:10.1109/TAP.2008.916935 Google Scholar
18. Garcia, E., C. Delgado, I. G. Diego, and M. F. Catedra, "An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 56, 2363-2371, Aug. 2008.
doi:10.1109/TAP.2008.926781 Google Scholar
19. Piegl, L., "On NURBS: A survey," EEE Computer Graphics and Application, Vol. 11, No. 1, 55-71, South Florida, 1991.
doi:10.1109/38.67702 Google Scholar
20. De Boor, C., "On calculating with B-splines," Journal of Approximation Theory, Vol. 6, 50-62, Jul. 1972.
doi:10.1016/0021-9045(72)90080-9 Google Scholar
21. Cox, M. G., "The numerical evaluation of B-splines," IMA Journal of Applied Mathematics, Vol. 10, 134-149, 1972.
doi:10.1093/imamat/10.2.134 Google Scholar
22. Boehm, W., "Inserting new knots into B-spline curves," Computer-Aided Design, Vol. 12, 199-201, Jul. 1980. Google Scholar
23. Van Bladel, J., Electromagnetic Fields, McGraw-Hill, 1964.
24. Duffy, M. G., "Quadrature over a pyramid or cube of integrands with a singularity at a vertex," SIAM J. Numer. Anal., Vol. 19, 1260-1262, Dec. 1982.
doi:10.1137/0719090 Google Scholar
25. Sertel, K. and J. L. Volakis, "Method of moments solution of volume integral equations using parametric geometry," Radio Science, Vol. 37, 1-7, Jan.-Feb. 2002. Google Scholar