1. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, 2003. Google Scholar
2. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," Progress In Electromagnetics Research, PIER 83, 413-434, 2008. Google Scholar
3. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, PIER 58, 149-169, 2006. Google Scholar
4. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, PIER 94, 263-280, 2009. Google Scholar
5. Huynh, P. T., A. M. Jarolimek, and S. Dayee, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998. Google Scholar
6. Christiansen, C. L., F. Wang, M. B. Barton, W. Kreuter, J. G. Elmore, A. E. Gelfand, and S. W. Fletcher, "Predicting the cumulative risk of false-positive mammograms," Nat. Cancer Inst. J., Vol. 92, 1373-1380, 2000.
doi:10.1093/jnci/92.17.1373 Google Scholar
7. Li, X., S. K. Davis, S. C. Hagness, D. W. Van Der Weide, and B. D. Van Veen, "Microwave imaging via space-time beam-forming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microw. Theory Tech., Vol. 52, 1856-1865, 2004.
doi:10.1109/TMTT.2004.832686 Google Scholar
8. Williams, T. C., E. C. Fear, and D. T. Westwick, "Tissue sensing adaptive radar for breast cancer detection-investigations of an improved skin-sensing method," IEEE Trans. Microw. Theory Tech., Vol. 54, 1308-1313, 2006.
doi:10.1109/TMTT.2006.871224 Google Scholar
9. Zainud-Deen, S. H., W. M. Hassen, E. El deen Ali, and K. H. Awadalla, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35 -46, 2008.
doi:10.2528/PIERB07112703 Google Scholar
10. Meaney, P. M., M. W. Fanning, T. Raynolds, et al. "Initial clinical experience with microwave breast imaging in women with normal mammography," Academic Radiology, Vol. 14, 207-218, 2007.
doi:10.1016/j.acra.2006.10.016 Google Scholar
11. Rubk, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using GaussNewton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propag., Vol. 55, 2320-2231, 2007.
doi:10.1109/TAP.2007.901993 Google Scholar
12. De Zaeytijd, J., C. L. Conmeaux, and A. Franchois, "Three-dimensional linear sampling applied to microwave breast imaging," 29th General Assembly of the International Union of Radio Science (URSI), Chicago, USA, August 7-16, 2008. Google Scholar
13. Zhou, H., T. Takenaka, J. E. Johnson, and T. Tanaka, "A breast imaging model using microwaves and a time a domain three dimensional reconstruction," Progress In Electromagnetics Research, PIER 93, 57-70, 2009. Google Scholar
14. Gilmore, C., A. Abubakar, W. Hu, T. M. Habashy, and P. M. Van Den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method," IEEE Trans. Antennas Propag., Vol. 57, 1528-1538, 2009.
doi:10.1109/TAP.2009.2016728 Google Scholar
15. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: 3. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
16., Lazebnik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, 2637-2656, 2007.
doi:10.1088/0031-9155/52/14/012 Google Scholar
17. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissue obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
18. Mashal, A., B. Sitharaman, J. H. Booske, and S. C. Haghness, "Dielectric characterization of carbons nanotube contrast agents for microwave breast cancer detection," 2009 IEEE Int. Symp. on Antennas and Propag. & USNC/URSI National Radio Sci. Meeting, Charleston, SC, USA, June 1-5, 2009. Google Scholar
19. Zhao, M., S. C. Haghness, B. D. Van Veen, and D. W. Van Der Weide, "Computational study of a focused acustic and microwave hybrid sensing modality that exploits coupled and elastic properties contrasts," 2009 IEEE Int. Symp. on Antennas and Propag. & USNC/URSI National Radio Sci. Meeting, Charleston, SC, USA, June 1-5, 2009. Google Scholar
20. Abbosh, A., "Early breast cancer detection using hybrid imaging modality," 2009 IEEE Int. Symp. on Antennas and Propag. & USNC/URSI National Radio Sci. Meeting, Charleston, SC, USA, June 1-5, 2009. Google Scholar
21. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Inst. of Physics, 1998.
22. Li, F., X. Chen, and K. Huang, "Microwave imaging a buried object by the GA and using the S11 parameter," Progress In Electromagnetics Research, PIER 85, 289-302, 2008. Google Scholar
23. Meng, Z. Q., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, PIER 72, 253-268, 2007. Google Scholar
24. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veem, and S. C. Hagness, "Database of 3D grid-based numerical breast phantom for use in computational electromagnetics simulations,", http://uwcem.ece.wisc.edunhome.htm. Google Scholar
25. Colton, D., H. Haddar, and M. Piana, "The linear sampling method in inverse electromagnetic scattering theory," Inv. Ploblems, Vol. 19, S105-S137, 2003.
doi:10.1088/0266-5611/19/6/057 Google Scholar
26. Isernia, T., V. Pascazio, and R. Pierri, "On the local minima in a tomographic imaging technique," IEEE Trans. Geosci. Rem. Sens., Vol. 39, 1596-1607, 2001.
doi:10.1109/36.934091 Google Scholar
27. Balanis, C. A., Advanced Enginnering Electromagnetics, John Wileys & Sons, 1989.
28. Catapano, I., L. Crocco, and T. Isernia, "On simple method for shape reconstruction of unknown scatters," IEEE Trans. Antennas Propag., Vol. 55, 1431-1436, 2007.
doi:10.1109/TAP.2007.895563 Google Scholar
29. Catapano, I., L. Crocco, M. D'Urso, and T. Isernia, "On the effect of support estimation and of a new model in 2-D inverse scattering problems," IEEE Trans. Antennas and Propag., Vol. 55, 1895-1899, 2007.
doi:10.1109/TAP.2007.898647 Google Scholar
30. Van Den Berg, M. and A. Abubakar, "Contrast source inversion method: State of art," Progress In Electromagnetics Research, PIER 34, 189-218, 2001. Google Scholar
31., Tikhonov, A. N., A. V. Goncharky, V. V. Stepanov, and A. G. Yagola, "Numerical Methods for the Solution of Ill-posed Problems," Dordrecht, Kluver, 1995. Google Scholar
32. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurement strategies," Radio Sci., Vol. 32, 2123-2137, 1997.
doi:10.1029/97RS01826 Google Scholar
33. Bucci, O. M. and G. Franceschetti, "On the degree of feedom of scattered fields," IEEE Trans. Antennas Propag., Vol. 37, 918-926, 1989.
doi:10.1109/8.29386 Google Scholar
34. Bucci, O. M., L. Crocco, and T. Isernia, "Improving the reconstruction capabilties in inverse scattering problems by exploitation of close-proximity setup," J. Opt. Soc. Am. A, Vol. 16, 1788-1798, 1999.
doi:10.1364/JOSAA.16.001788 Google Scholar
35. Chew, W. C. and J. C. Lin, "A frequency-hopping approach for microwave imaging of large inhomogeneous bodies," IEEE Microw. Guided Wave Lett., Vol. 5, 439-441, 1995.
doi:10.1109/75.481854 Google Scholar
36. Rappaport, C., "Determination of bolus dielectric constrant for optimum coupling of microwaves through skin for breast cancer imaging," Int. J. of Antennas and Propag., Vol. 2008, 2008. Google Scholar
37. Catapano, I., L. Crocco, M. DUrso, A. Morabito, and T. Isernia, "Microwave tomography of breast cancer: A feasibility study," European Conf. on Antennas and Propag. (EuCAP), Nice, France, November 6-10, 2006. Google Scholar
38. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first-order diffraction tomography," IEEE Trans. on Microw. Theory Tech., Vol. 32, 860-874, 1984.
doi:10.1109/TMTT.1984.1132783 Google Scholar
39. Bucci, O. M., N. Cardace, L. Crocco, and T. Isernia, "Degree of non-linearity and a new solution procedure in scalar 2-D inverse scattering problems," J. Opt. Soc. Am. A, Vol. 18, 1832-1845, 2001.
doi:10.1364/JOSAA.18.001832 Google Scholar
40. Isernia, T., L. Crocco, and M. D'Urso, "New tools and series for forward and inverse scattering problems in lossy media," IEEE Geosci. Remote Sens. Letters, Vol. 1, 327-331, 2004.
doi:10.1109/LGRS.2004.837008 Google Scholar