1. Gianvittorio, J. P. and Y. Rahmat-Samii, "Fractal antennas: A novel antenna miniaturization technique, and applications," IEEE Antennas and Propagation Magazine, Vol. 44, No. 1, 20-36, 2002.
doi:10.1109/74.997888 Google Scholar
2. Naghshvarian-Jahromi, M. and N. Komjani, "Novel fractal monopole wideband antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 2-3, 195-205, 2008.
doi:10.1163/156939308784160758 Google Scholar
3. Cui, G., Y. Liu, and S. Gong, "A novel fractal patch antenna with low RCS," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2403-2411, 2007.
doi:10.1163/156939307783134335 Google Scholar
4. Chen, X. and K. Huang, "Wideband properties of fractal bowtie dipoles," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 11, 1511-1518, 2006.
doi:10.1163/156939306779274345 Google Scholar
5. Ataeiseresht, R., C. H. Ghobadi, and J. Nourinia, "A novel analysis of minkowski fractal microstrip patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1115-1127, 2006.
doi:10.1163/156939306776930268 Google Scholar
6. Wu, W. and Y. H. Bi, "Switched-beam planar fractal antenna," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 409-415, 2006.
doi:10.1163/156939306775701786 Google Scholar
7. Yeo, U. B., J. N. Lee, J. K. Park, H. S. Lee, and H. S. Kim, "An ultra-wideband antenna design using sierpinski sieve fractal," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11-12, 1713-1723, 2008.
doi:10.1163/156939308786390148 Google Scholar
8. Salmasi, M. P., F. H. Kashani, and M. N. Azarmanesh, "A novel broadband fractal sierpinski shaped microstrip antenna," Progress In Electromagnetics Research C, Vol. 4, 179-190, 2008. Google Scholar
9. Khan, S. N., J. Hu, J. Xiong, and S. He, "Circular fractal monopole antenna for low VSWR UWB applications," Progress In Electromagnetics Research Letters, Vol. 1, 19-25, 2008.
doi:10.2528/PIERL07110903 Google Scholar
10. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "Fractal dimension and frequency response of fractal shaped antennas," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 222-225, Jun. 22-27, 2003. Google Scholar
11. Vinoy, K. J., J. K. Abraham, and V. K. Varadan, "On the relationship between fractal dimension and the performance of multi-resonant dipole antennas using Koch curves," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 9, 2296-2303, 2003.
doi:10.1109/TAP.2003.816352 Google Scholar
12. Gonzalez, J. M. and J. Romeu, "Experiences on monopoles with the same fractal dimension and different topology ," IEEE Antennas and Propagation Society International Symposium, Vol. 4, 218-221, Jun. 22-27, 2003. Google Scholar
13. Best, S. R., "A discussion on the significance of geometry in determining the resonant behavior of fractal and other non-euclidean wire antennas," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 9-27, 2003.
doi:10.1109/MAP.2003.1232160 Google Scholar
14. Sengupta, K. and K. J. Vinoy, "A new measure of lacunarity for generalized fractals and its impact in the electromagnetic behavior of Koch dipole antennas," Fractals, Vol. 14, No. 4, 271-282, 2006.
doi:10.1142/S0218348X06003313 Google Scholar
15. Comisso, M., "Theoretical and numerical analysis of the resonant behavior of the minkowski fractal dipole antenna," IET Microwaves, Antennas and Propagation, Vol. 3, No. 3, 456-464, 2009.
doi:10.1049/iet-map.2008.0249 Google Scholar
16. Ansarizadeh, M., A. Ghorbani, and R. A. Abd-Alhameed, "An approach to equivalent circuit modeling of rectangular microstrip antennas," Progress In Electromagnetics Research B, Vol. 8, 77-86, 2008.
doi:10.2528/PIERB08050403 Google Scholar
17. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, John Wiley and Sons, 1990.
18. Burke, G. J. and A. J. Poggio, Numerical Electromagnetic Code (NEC) Method of Moments, Naval Ocean Systems Center, 1980.
19. Martorella, M., F. Berizzi, and E. D. Mese, "On the fractal dimension of sea surface backscattered signal at low grazing angle," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 5, 1193-1204, 2004.
doi:10.1109/TAP.2004.827533 Google Scholar
20. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman and Company, 1977.
21. Allain, C. and M. Cloitre, "Characterizing the lacunarity of random and deterministic fractal sets," Physical Review A, Vol. 44, No. 6, 3352-3558, 1991.
doi:10.1103/PhysRevA.44.3552 Google Scholar
22. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley and Sons, 1997.